Mono- and polyunsaturated fatty acids (FAs) are broadly used as food supplements. However, their effect on the aggregation of amyloidogenic proteins remains unclear. In this study, we investigated the effect of a large number of mono- and polyunsaturated, as well as fully saturated FAs on the aggregation of amyloid β (A) peptide.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2024
Abrupt aggregation of amyloid β (Aβ) peptide in the frontal lobe is the expected underlying cause of Alzheimer's disease (AD). β-Sheet-rich oligomers and fibrils formed by Aβ exert high cell toxicity. A growing body of evidence indicates that lipids can uniquely alter the secondary structure and toxicity of Aβ aggregates.
View Article and Find Full Text PDFAmyloid oligomers and fibrils are protein aggregates that exert a high cell toxicity. Efficient degradation of these protein aggregates can minimize the spread and progression of neurodegeneration. In this study, we investigate the properties of natural killer (NK) cells and macrophages in the degradation of α-synuclein (α-Syn) aggregates grown in a lipid-free environment and in the presence of phosphatidylserine and cholesterol (PS/Cho), which are lipids that are directly associated with the onset and progression of Parkinson's disease.
View Article and Find Full Text PDFParkinson's disease (PD) is a severe pathology that is caused by a progressive degeneration of dopaminergic neurons in substantia nigra pars compacta as well as other areas in the brain. These neurodegeneration processes are linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that is abundant at presynaptic nerve termini, where it regulates cell vesicle trafficking. Due to the direct interactions of α-syn with cell membranes, a substantial amount of work was done over the past decade to understand the role of lipids in α-syn aggregation.
View Article and Find Full Text PDFThe progressive aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including Parkinson's disease and injection and transthyretin amyloidosis. A growing body of evidence indicates that protein deposits detected in organs and tissues of patients diagnosed with such pathologies contain fragments of lipid membranes. In vitro experiments also showed that lipid membranes could strongly change the aggregation rate of amyloidogenic proteins, as well as alter the secondary structure and toxicity of oligomers and fibrils formed in their presence.
View Article and Find Full Text PDFProgressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, hypothalamus, and thalamus is a hallmark of Parkinson's disease. Neuronal death is linked to the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that regulates cell vesicle trafficking. α-Syn aggregation rate, as well as the secondary structure and toxicity of α-Syn fibrils, could be uniquely altered by lipids.
View Article and Find Full Text PDFLong-chain polyunsaturated fatty acids (LCPUFAs) are essential components of a human diet. These molecules are critically important for cognitive attention and memory, mood states, coronary circulation, and cirrhosis. However, recently reported findings demonstrated that docosahexaenoic (DHA) and arachidonic acids (ARA), ω-3 and ω-6 LCPUFAs, accelerated the aggregation rates of insulin and α-synuclein, proteins that are directly linked to diabetes type 2 and Parkinson's disease, respectively.
View Article and Find Full Text PDFTransthyretin (TTR) is a small tetrameric protein that aggregates, forming highly toxic oligomers and fibrils. In the blood and cerebrospinal fluid, TTR can interact with various biomolecules, phospho- and sphingolipids, and cholesterol on the red blood cell plasma membrane. However, the role of these molecules in TTR aggregation remains unclear.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by progressive memory loss and serious impairment of cognitive abilities. AD is the most common cause of dementia, affecting more than 44 million people around the world. The hallmark of AD is amyloid plaques, extracellular deposits primarily found in the frontal lobe, that are composed of amyloid β (Aβ) aggregates.
View Article and Find Full Text PDFTransthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils.
View Article and Find Full Text PDFA progressive aggregation of misfolded proteins is a hallmark of numerous pathologies including diabetes Type 2, Alzheimer's disease, and Parkinson's disease. As a result, highly toxic protein aggregates, which are known as amyloid fibrils, are formed. A growing body of evidence suggests that phospholipids can uniquely alter the secondary structure and toxicity of amyloid aggregates.
View Article and Find Full Text PDFProgressive degeneration of dopaminergic neurons in the midbrain, hypothalamus, and thalamus is a hallmark of Parkinson's disease (PD). Neuronal death is linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that regulates vesicle trafficking in synaptic clefts. Studies of families with a history of PD revealed several mutations in α-syn including A30P and A53T that are linked to the early onset of this pathology.
View Article and Find Full Text PDFTransthyretin (TTR) is a small, β-sheet-rich tetrameric protein that transports thyroid hormone thyroxine and retinol. Phospholipids, including phosphatidic acid (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear.
View Article and Find Full Text PDFTransthyretin amyloidosis is a severe pathology characterized by the progressive accumulation of transthyretin (TTR) in various organs and tissues. This highly conserved through vertebrate evolution protein transports thyroid hormone thyroxine. In our bodies, TTR can interact with a large number of molecules, including ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) that are broadly used as food supplies.
View Article and Find Full Text PDFACS Chem Neurosci
September 2023
Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including diabetes type 2 and injection amyloidosis. Although the exact cause of this process is unclear, a growing body of evidence suggests that protein aggregation is linked to a high protein concentration and the presence of lipid membranes. Endosomes are cell organelles that often possess high concentrations of proteins due to their uptake from the extracellular space.
View Article and Find Full Text PDFThe progressive accumulation of transthyretin (TTR), a small protein that transports thyroxine, in various organs and tissues is observed upon transthyretin amyloidosis, a severe pathology that affects the central, peripheral, and autonomic nervous systems. Once expressed in the liver and choroid plexus, TTR is secreted into the bloodstream and cerebrospinal fluid. In addition to thyroxine, TTR interacts with a large number of molecules, including retinol-binding protein and lipids.
View Article and Find Full Text PDFAbrupt aggregation of misfolded proteins is the underlying molecular cause of numerous severe pathologies including Alzheimer's and Parkinson's diseases. Protein aggregation yields small oligomers that can later propagate into amyloid fibrils, β-sheet-rich structures with a variety of topologies. A growing body of evidence suggests that lipids play an important role in abrupt aggregation of misfolded proteins.
View Article and Find Full Text PDFDocosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components.
View Article and Find Full Text PDFPhosphatidylserine (PS) is a negatively charged lipid that plays a critically important role in cell apoptosis. Under physiological conditions, PS is localized on the cytosolic side of plasma membranes via ATP-dependent flippase-mediated transport. A decrease in the ATP levels in the cell, which is taken place upon pathological processes, results in the increase in PS concentration on the exterior part of the cell membranes.
View Article and Find Full Text PDFIrreversible aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies, including diabetes type 2, Alzheimer's, and Parkinson's diseases. Such an abrupt protein aggregation results in the formation of small oligomers that can propagate into amyloid fibrils. A growing body of evidence suggests that protein aggregation can be uniquely altered by lipids.
View Article and Find Full Text PDFAbrupt aggregation of misfolded proteins is the underlying molecular cause of Alzheimer disease (AD) and Parkinson disease (PD). Both AD and PD are severe pathologies that affect millions of people around the world. A small 42 amino acid long peptide, known as amyloid β (Aβ), aggregates in the frontal cortex of AD patients forming oligomers and fibrils, highly toxic protein aggregates that cause progressive neuron death.
View Article and Find Full Text PDFAbrupt aggregation of amyloid β (Aβ) peptide is a hallmark of Alzheimer's disease (AD), a severe pathology that affects more than 44 million people worldwide. A growing body of evidence suggests that lipids can uniquely alter rates of Aβ aggregation. However, it remains unclear whether lipids only alter rates of protein aggregation or also uniquely modify the secondary structure and toxicity of Aβ oligomers and fibrils.
View Article and Find Full Text PDFACS Chem Neurosci
October 2022
Abrupt aggregation of amyloid beta (Aβ) peptide is strongly associated with Alzheimer's disease. In this study, we used atomic force microscopy-infrared (AFM-IR) spectroscopy to characterize the secondary structure of Aβ oligomers, protofibrils and fibrils formed at the early (4 h), middle (24 h), and late (72 h) stages of protein aggregation. This innovative spectroscopic approach allows for label-free nanoscale structural characterization of individual protein aggregates.
View Article and Find Full Text PDFBiophysical properties of plasma membranes are determined by a chemical structure of phospholipids, including saturation of fatty acids and charge of polar heads of these molecules. Phospholipids not only determine fluidity and plasticity of membranes but also play an important role in abrupt aggregation of misfolded proteins. In this study, we investigate the role of the charge of the most abundant phospholipids in the plasma membrane on the aggregation properties of the lysozyme.
View Article and Find Full Text PDFAbrupt aggregation of misfolded proteins is a hallmark of the large group of amyloid pathologies that include diabetes type 2, Alzheimer and Parkinson's diseases. Protein aggregation yields oligomers and fibrils, β-sheet-rich structures that exert cell toxicity. Microscopic examination of amyloid deposits reveals the presence of lipids membranes, which suggests that lipids can be involved in the process of pathogenic protein assembly.
View Article and Find Full Text PDF