Cutaneous tissue injury, both in vivo and in vitro, initiates activation of a "wound repair" transcriptional program. One such highly induced gene encodes plasminogen activator inhibitor type-1 (PAI-1, SERPINE1). PAI-1-GFP, expressed as a fusion protein under inducible control of +800 bp of the wound-activated PAI-1 promoter, prominently "marked" keratinocyte migration trails during the real-time of monolayer scrape-injury repair.
View Article and Find Full Text PDFSeveral proteases and their specific inhibitors modulate the interdependent processes of cell migration and matrix proteolysis as part of the global program of trauma repair. Expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of barrier proteolysis and cell-to-matrix adhesion, for example, is spatially-temporally regulated following epithelial denudation injury in vitro as well as in vivo. PAI-1 mRNA/protein synthesis was induced early after epidermal monolayer scraping and restricted to keratinocytes comprising the motile cohort closely recapitulating, thereby, similar events during cutaneous healing.
View Article and Find Full Text PDFPurpose: Elevated manganese superoxide dismutase (Sod2) levels have been reported to be associated with an increased frequency of tumor invasion and metastasis in certain cancers, and the aim of this study is to examine the molecular mechanisms by which this occurs.
Experimental Design: Sod2 and catalase overexpressing HT-1080 fibrosarcoma cell lines were used to evaluate the H(2)O(2)-dependent regulation of matrix metalloproteinase (MMP)-1 promoter activity, mitogen-activated protein (MAP) kinase signaling, DNA-binding activity, and MMP mRNA levels. The invasive and metastatic potential of Sod2 overexpressing cells was characterized using subrenal capsular implantation or tail vein injection of tumor cells into nude mice, respectively.
Several proteases and their co-expressed inhibitors modulate the interdependent processes of cell migration and matrix proteolysis during wound repair. Transcription of the gene encoding plasminogen activator inhibitor type 1 (PAI-1), a serine protease inhibitor important in the control of barrier proteolysis and cell-to-matrix adhesion, is spatially-temporally regulated following epithelial denudation injury in vitro as well as in vivo. Using a well-defined culture model of acute epidermal wounding and reepithelialization, PAI-1 mRNA/protein synthesis was induced early after monolayer scraping and restricted to cells comprising the motile cohort.
View Article and Find Full Text PDF