Objective: A novel protocol for paired associative stimulation (PAS), called high PAS, consists of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (PNS). High PAS was developed for spinal cord injury rehabilitation and targets plastic changes in stimulated pathways in the corticospinal tract, which improves motor function. As therapy interventions can last many weeks, it is important to fully understand the effects of high PAS, including its effect on the cardiovascular system.
View Article and Find Full Text PDFIntroduction: Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) and induces plastic changes in the human corticospinal tract. We have previously shown that PAS consisting of TMS pulses given at 100% of stimulator output and high-frequency PNS is beneficial for motor rehabilitation of patients with a chronic incomplete spinal cord injury (SCI). The therapeutic possibilities of this PAS variant for walking rehabilitation of paraplegic patients are unexplored.
View Article and Find Full Text PDFIntroduction: This case study explores the gains in hand function in an individual with a chronic spinal cord injury (SCI). The intervention was long-term paired associative simulation (PAS). We aimed to provide PAS until full recovery of hand muscle strength occurred, or until improvements ceased.
View Article and Find Full Text PDFBackground: Patients with widespread unilateral chronic pain associated with recurrent herpes simplex virus (HSV) infections show functional and/or structural changes in the insula, anterior cingulate cortex, frontal and prefrontal cortices, as well as the thalamus, suggesting central dysfunction of the pain system in these patients. Central pain has been associated with attenuated laser-evoked cortical responses. We aimed to clarify whether the observed deficient activation of these areas to acute nociceptive stimuli is due to a lesion at a lower level of pain processing pathways.
View Article and Find Full Text PDFClin Neurophysiol
February 2011