The development of a cost-efficient device to rapidly detect pandemic viruses is paramount. Hence, an innovative and scalable synthesis of metal nanoparticles followed by its usage for rapid detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been reported in this work. The simple synthesis of metal nanoparticles utilizing tin as a solid-state reusable reducing agent is used for the SARS-CoV-2 ribonucleic acid (RNA) detection.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2017
Sensor technology for the rapid detection of the analytes with high sensitivity and selectivity has several challenges. Despite the challenges, colorimetric sensors have been widely accepted for its high sensitive and selective response towards various analytes. In this review, colorimetric sensors for the detection of biomolecules like protein, DNA, pathogen and chemical compounds like heavy metal ions, toxic gases and organic compounds have been elaborately discussed.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2017
This work demonstrates the effective surface functionalization of Ag, Au and bimetallic Ag-Au nanoparticles using l-histidine for colorimetric detection of dopamine (DA) which plays majorly in recognizing the neurological disorder. l-Histidine (l-His) capped Ag, Au, and bimetallic Ag-Au nanoparticles are characterized using physico-chemical techniques. The optical behaviour of nanoparticles has been analysed at various time intervals using UV-Vis absorption spectroscopy.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2017
A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM).
View Article and Find Full Text PDF