Publications by authors named "Kirty S Solanky"

1H-NMR (nuclear magnetic resonance)-based chemometric methods have been applied for the first time to investigate changes in the plasma metabolite profiles of Atlantic salmon Salmo salar as a result of exposure to Aeromonas salmonicida subsp. salmonicida, a Gram-negative bacterium that is the etiological agent of furunculosis. Plasma samples were obtained from salmon that survived 21 d post exposure to A.

View Article and Find Full Text PDF

A metabonomic approach to nutrition research may provide an insight into in vivo mechanisms of action following nutritional intervention. This approach was applied to investigate changes in the (1)H NMR spectral profile of urine collected from controlled dietary intervention studies conducted in premenopausal women before and following soy or miso consumption. The aim of the study was to identify the biochemical effects of a diet rich in soy isoflavones, phytochemicals which are receiving significant attention because of their potential importance to human health and wide bioactivity in vitro.

View Article and Find Full Text PDF

This study describes the first metabonomic approach to determining biochemical modifications following dietary intervention in humans. Significant interest in the mechanisms of action of soy isoflavones has predominantly stemmed from in vitro experiments but to date the availability of analytical tools for studying the mechanisms of action in vivo have been limited. Here a metabonomic approach based on chemometric analysis of 1H nuclear magnetic resonance spectra of blood plasma has been used to investigate metabolic changes following dietary intervention with soy isoflavones in healthy premenopausal women under controlled environmental conditions.

View Article and Find Full Text PDF

Flavonoid consumption via tea drinking has been attributed a number of potential health benefits including cancer prevention, anti-inflammatory action, and cardioprotectant activity. Although the predominant flavonoids in fresh leaf and green tea are known to be flavan-3-ols and flavan-3-O-gallates ("the catechins"), the biochemical effects of tea polyphenol consumption on living systems are generally poorly understood. Metabonomic methods utilizing (1)H NMR spectroscopy of biofluids and principal component analysis (PCA) have been applied to investigate the bioavailability and metabolic responses of rats to a single dose of 22 mg of epicatechin (EC) dissolved in water.

View Article and Find Full Text PDF