Clotrimazole, an antifungal agent for treating vaginal candidiasis, faces challenges in localized delivery due to poor solubility, complexity of the vaginal environment, limited fluid for dissolution, and rapid self washout of the vagina. The study aimed to enhance clotrimazole solubility using hot-melt extrusion (HME) to develop vaginal films with adequate bioadhesion, mechanical strength, and extended-release properties. Different formulations were created by varying the ratios of polyethylene oxide (PEO) grades (N750 and N10) to adjust the films' properties.
View Article and Find Full Text PDFCXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge.
View Article and Find Full Text PDFMicrobial infection is characterized by release of multiple proinflammatory chemokines that direct neutrophils to the insult site. How collective function of these chemokines orchestrates neutrophil recruitment is not known. Here, we characterized the role for heterodimer and show that the Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant in mice and can recruit more neutrophils than the individual chemokines.
View Article and Find Full Text PDFThe cAMP receptor protein (CRP) is a global regulatory protein. We evaluated the role of CRP in starvation physiology in Salmonella Typhimurium. The Δcrp mutant survived 10 days of starvation.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to biotic and abiotic stresses. The survival of Salmonella in nature depends on the global regulators like cAMP receptor protein (CRP).
View Article and Find Full Text PDFChemokines play a crucial role in combating microbial infection by recruiting blood neutrophils to infected tissue. In mice, the chemokines Cxcl1/KC and Cxcl2/MIP2 fulfill this role. Cxcl1 and Cxcl2 exist as monomers and dimers, and exert their function by activating the Cxcr2 receptor and binding glycosaminoglycans (GAGs).
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) bind a large array of proteins and mediate fundamental and diverse roles in human physiology. Ion pair interactions between protein lysines/arginines and GAG sulfates/carboxylates mediate binding. Neutrophil-activating chemokines (NAC) are GAG-binding proteins, and their sequences reveal high selectivity for lysines over arginines indicating they are functionally not equivalent.
View Article and Find Full Text PDFCirculating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs).
View Article and Find Full Text PDFChemokine CXCL8 plays a pivotal role in host immune response by recruiting neutrophils to the infection site. CXCL8 exists as monomers and dimers, and mediates recruitment by interacting with glycosaminoglycans (GAGs) and activating CXCR1 and CXCR2 receptors. How CXCL8 monomer and dimer interactions with both receptors and GAGs mediate trafficking is poorly understood.
View Article and Find Full Text PDFPlatelet-derived chemokine CXCL7 (also known as NAP-2) plays a crucial role in orchestrating neutrophil recruitment in response to vascular injury. CXCL7 exerts its function by activating the CXC chemokine receptor 2 (CXCR2) receptor and binding sulfated glycosaminoglycans (GAGs) that regulate receptor activity. CXCL7 exists as monomers, dimers, and tetramers, and previous studies have shown that the monomer dominates at lower and the tetramer at higher concentrations.
View Article and Find Full Text PDFChemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG).
View Article and Find Full Text PDFThe chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG ligand, lysine and arginine residues located in two non-overlapping domains mediate GAG interactions, and there is extensive overlap between GAG and receptor-binding domains.
View Article and Find Full Text PDFThe chemokine CXCL1 and its receptor CXCR2 play a crucial role in host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. Dysregulation in this process has been implicated in collateral tissue damage causing disease. CXCL1 reversibly exists as monomers and dimers, and it has been proposed that distinct monomer and dimer activities and the monomer-dimer equilibrium regulate the neutrophil function.
View Article and Find Full Text PDFChemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions.
View Article and Find Full Text PDFGlycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length.
View Article and Find Full Text PDFThe CXCL1/CXCR2 axis plays a crucial role in recruiting neutrophils in response to microbial infection and tissue injury, and dysfunction in this process has been implicated in various inflammatory diseases. Chemokines exist as monomers and dimers, and compelling evidence now exists that both forms regulate in vivo function. Therefore, knowledge of the receptor activities of both CXCL1 monomer and dimer is essential to describe the molecular mechanisms by which they orchestrate neutrophil function.
View Article and Find Full Text PDFThe innate immune receptor Toll-like receptor 3 (TLR3) can be present on the surface of the plasma membranes of cells and in endolysosomes. The Unc93b1 protein has been reported to facilitate localization of TLR7 and 9 and is required for TLR3, -7, and -9 signaling. We demonstrate that siRNA knockdown of Unc93b1 reduced the abundance of TLR3 on the cell surface without altering total TLR3 accumulation.
View Article and Find Full Text PDFWe examined the ability of recombinant guinea pig IL-8 (CXCL8) to activate neutrophils upon infection with virulent Mycobacterium tuberculosis. Using a Transwell insert culture system, contact-independent cell cultures were studied in which rgpIL-8-treated neutrophils were infected with virulent M. tuberculosis in the upper well, and AM were cultured in the lower well.
View Article and Find Full Text PDFThe early influx of neutrophils to the site of infection may be an important step in host resistance against Mycobacterium tuberculosis. In this study, we investigated the effect of M. tuberculosis infection on the ability of guinea pig neutrophils to produce interleukin-8 (IL-8; CXCL8) and tumor necrosis factor alpha (TNF-alpha) and to activate alveolar macrophages.
View Article and Find Full Text PDFIL-8/CXCL8 plays a critical role in the trafficking and activation of neutrophils via its receptors, CXCR1 and CXCR2, in humans. CXCR1 is highly selective for IL-8, whereas CXCR2 is activated by all CXC chemokines with an ELR motif. In mice and rats, neither IL-8 nor CXCR1 is present, making it difficult to evaluate the in vivo roles of the IL-8/CXCR1 interactions.
View Article and Find Full Text PDF