Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies.
View Article and Find Full Text PDFDiffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics.
View Article and Find Full Text PDFIntroduction: Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2023
Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data - often consisting of multiple replicates/conditions - rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data.
View Article and Find Full Text PDFThe p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein-protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions.
View Article and Find Full Text PDFHow immune tolerance is lost to pancreatic β-cell peptides triggering autoimmune type 1 diabetes is enigmatic. We have shown that loss of the proinsulin chaperone glucose-regulated protein (GRP) 94 from the endoplasmic reticulum (ER) leads to mishandling of proinsulin, ER stress, and activation of the immunoproteasome. We hypothesize that inadequate ER proinsulin folding capacity relative to biosynthetic need may lead to an altered β-cell major histocompatibility complex (MHC) class-I bound peptidome and inflammasome activation, sensitizing β-cells to immune attack.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) molecules are cell-surface glycoproteins that present peptide antigens on the cell surface for surveillance by T lymphocytes, which contemporaneously seek signs of disease. Mass spectrometric analysis allows us to identify large numbers of these peptides (the immunopeptidome) following affinity purification of solubilized HLA-peptide complexes. However, in recent years, there has been a growing awareness of the "dark side" of the immunopeptidome: unconventional peptide epitopes, including neoepitopes, which elude detection by conventional search methods because their sequences are not present in reference protein databases (DBs).
View Article and Find Full Text PDFThis article describes the purification of HLA-bound peptides and their subsequent sequencing by mass spectrometry. These methods can be used for both HLA class I and class II molecules and can be adapted to different species depending on the availability of specific antibodies. Peptides can be successfully isolated from a variety of sample types, including in vitro cultured cells and primary tissues.
View Article and Find Full Text PDFThe identification of T cell epitopes derived from tumour specific antigens remains a significant challenge for the development of peptide-based vaccines and immunotherapies. The use of mass spectrometry-based approaches (immunopeptidomics) can provide powerful new avenues for the identification of such epitopes. In this study we report the use of complementary peptide antigen enrichment methods and a comprehensive mass spectrometric acquisition strategy to provide in-depth immunopeptidome data for the THP-1 cell line, a cell line used widely as a model of human leukaemia.
View Article and Find Full Text PDFIt is well established that the current problem of tuberculosis (TB) can be combated by overcoming the drawbacks of the currently available BCG vaccine. This would involve incorporation of antigens that can control TB at all stages including the dormant phase which is generally ignored. Hence, DosR regulon proteins, which are expressed in latent infection, could prove to be very good vaccine candidates as they can possibly target the silent but most predominant form of TB infection.
View Article and Find Full Text PDFTuberculosis (Edinb)
September 2017
Cell wall of Mycobacterium tuberculosis (M.tb) is a major source of immunogenic proteins that can be tested as vaccine candidates. MymA (Rv3083), a 55 kDa M.
View Article and Find Full Text PDFTuberculosis is a global health problem especially with the emergence of drug-resistant Mycobacterium tuberculosis strains, creating an urgent need to identify new drug targets. The mycobacterial cell wall is an attractive target for chemotherapeutic agents. Gene products of mymA operon are known to be required for the maintenance of cell wall and play an important role in persistence, thus making them important drug targets.
View Article and Find Full Text PDFLimited efficacy of Bacillus Calmette-Guérin vaccine has raised the need to explore other immunogenic candidates to develop an effective vaccine against Mycobacterium tuberculosis (Mtb). Both CD4+ and CD8+ T cells play a critical role in host immunity to Mtb. Infection of macrophages with Mtb results in upregulation of mymA operon genes thereby suggesting their importance as immune targets.
View Article and Find Full Text PDFObjective/background: There is an urgent need for a more effective vaccine against Mycobacterium tuberculosis (Mtb). Although CD4+ T cells play a central role in host immunity to Mtb, recent evidence suggests a critical role of CD8+ T cells in combating Mtb. In the present study, we have predicted HLA antigen class I binding peptides of DosR operon using an in-silico approach.
View Article and Find Full Text PDF