Publications by authors named "Kirti M Yenkie"

Commercial lubricant industries use a complex pipeline network for the sequential processing of thousands of unique products annually. Flushing is conducted between changeovers to ensure the integrity of each production batch. An upcoming product is used for cleaning the residues of the previous batch, resulting in the formation of a commingled/mixed oil that does not match the specifications of either of the two batches.

View Article and Find Full Text PDF

Plastic growing demand and the increment in global plastics production have raised the number of spent plastics, out of which over 90% are either landfilled or incinerated. Both methods for handling spent plastics are susceptible to releasing toxic substances, damaging air, water, soil, organisms, and public health. Improvements to the existing infrastructure for plastics management are needed to limit chemical additive release and exposure resulting from the end-of-life (EoL) stage.

View Article and Find Full Text PDF

Solvents are used in chemical and pharmaceutical industries as a reaction medium, selective dissolution and extraction media, and dilution agents. Thus, a sizable amount of solvent waste is generated due to process inefficiencies. Most common ways of handling solvent waste are on-site, off-site disposal, and incineration, which have a considerable negative environmental impact.

View Article and Find Full Text PDF

Recovering waste solvent for reuse presents an excellent alternative to improving the greenness of industrial processes. Implementing solvent recovery practices in the chemical industry is necessary, given the increasing focus on sustainability to promote a circular economy. However, the systematic design of recovery processes is a daunting task due to the complexities associated with waste stream composition, techno-economic analysis, and environmental assessment.

View Article and Find Full Text PDF

Background: Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks.

View Article and Find Full Text PDF

Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process.

View Article and Find Full Text PDF

In vitro fertilization (IVF) is the most widely used technique in assisted reproductive technologies (ART). It has been divided into four stages; (i) superovulation, (ii) egg retrieval, (iii) insemination/fertilization and (iv) embryo transfer. The first stage of superovulation is a drug induced method to enable multiple ovulation, i.

View Article and Find Full Text PDF

in vitro fertilization (IVF) is one of the most highly pursued assisted reproductive technologies (ART) worldwide. IVF procedure is divided into four stages: Superovulation, Egg-retrieval, Insemination/Fertilization and Embryo transfer. Among these superovulation is the most crucial stage since it involves external injection of hormones to stimulate development and maturation of multiple follicles or oocytes.

View Article and Find Full Text PDF

In vitro fertilization (IVF) is the most common technique in assisted reproductive technology and in most cases the last resort for infertility treatment. It has four basic stages: superovulation, egg retrieval, insemination/fertilization, and embryo transfer. Superovulation is a drug-induced method to enable multiple ovulation per menstrual cycle.

View Article and Find Full Text PDF