Publications by authors named "Kirti Lathoria"

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells.

View Article and Find Full Text PDF

In an attempt to understand the role of dysregulated circadian rhythm in glioma, our recent findings highlighted the existence of a feed-forward loop between tumour metabolite lactate, pro-inflammatory cytokine IL-1β and circadian CLOCK. To further elucidate the implication of this complex interplay, we developed a mathematical model that quantitatively describes this lactate dehydrogenase A (LDHA)-IL-1β-CLOCK/BMAL1 circuit and predicts potential therapeutic targets. The model was calibrated on quantitative western blotting data in two glioma cell lines in response to either lactate inhibition or IL-1β stimulation.

View Article and Find Full Text PDF

Gliomas harbouring mutations in IDH1 (isocitrate dehydrogenase 1) are characterized by greater sensitivity to chemotherapeutics. These mutants also exhibit diminished levels of transcriptional coactivator YAP1 (yes-associated protein 1). Enhanced DNA damage in IDH1 mutant cells, as evidenced by γH2AX formation (phosphorylation of histone variant H2A.

View Article and Find Full Text PDF

Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1 gliomas.

View Article and Find Full Text PDF

Mutation of the isocitrate dehydrogenase 1 (IDH1) gene leads to the production of oncometabolite D-2-hydroxyglutarate (2-HG) from α-ketoglutarate and is associated with better prognosis in glioma. As Yes-associated protein 1 (YAP1) is an important regulator of tumor progression, its role in glioma expressing IDH1 with an R132H mutation was investigated. Diminished nuclear levels of YAP1 in IDH1 mutant glioma tissues and cell lines were accompanied by decreased levels of mitochondrial transcription factor A (TFAM).

View Article and Find Full Text PDF

Increasing evidences suggest that the SWI/SNF chromatin remodeling complex involved in the organization of chromatin architecture via ATP hydrolysis, plays an important role in human cancer. As TCGA gene expression analyses revealed signature of enhanced oxidative stress in GBMs harbouring Brg1mutations, we examined the involvement of ATPase subunit of BRG1 in regulating oxidative stress responses in glioma. BRG1-MUT overexpressing glioma cells exhibit intrinsically higher reactive oxygen species (ROS) levels as compared to BRG1-WT.

View Article and Find Full Text PDF

A desynchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their interrelationship in cancer etiology is largely unknown, we investigated the link among the three in glioma. The tumor metabolite lactate-mediated increase in the proinflammatory cytokine interleukin-1β (IL-1β) was concomitant with elevated levels of the core circadian regulators Clock and Bmal1.

View Article and Find Full Text PDF