Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show that the expression of the slit guidance ligand 2 (SLIT2) tumor suppressor gene is reduced in SCLC tumors relative to adjacent normal tissue.
View Article and Find Full Text PDFChemotherapy forms the backbone of current treatments for many patients with advanced non-small-cell lung cancer (NSCLC). However, the survival rate is low in these patients due to the development of drug resistance, including cisplatin resistance. In this study, we developed a novel strategy to combat the growth of cisplatin-resistant (CR) NSCLC cells.
View Article and Find Full Text PDFSlit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation .
View Article and Find Full Text PDFThe growing burden of obesity and incidence of the aggressive triple negative breast cancer (TNBC) is a challenge, especially amongst vulnerable populations with unmet medical needs and higher mortality from breast cancer. While some mechanisms linking obesity and TNBC have been identified, the complex nature of pathogenesis, in both obesity as well as TNBC poses a real challenge in establishing a causative role of obesity in risk of TNBC. In this review article, we discuss pathological mechanisms identified in the tumor microenvironment (TME) as well as the obese microenvironment (OME), such as inflammation, insulin resistance and survival pathways that contribute to the development and progression of TNBC.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored.
View Article and Find Full Text PDFThe rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4).
View Article and Find Full Text PDFInteractions between cells and their environment influence key physiologic processes such as their propensity to migrate. However, directed migration controlled by extrinsically applied electrical signals is poorly understood. Using a novel microfluidic platform, we found that metastatic breast cancer cells sense and respond to the net direction of weak (∼100 µV cm), asymmetric, non-contact induced Electric Fields (iEFs).
View Article and Find Full Text PDFThe family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling.
View Article and Find Full Text PDFThe chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models.
View Article and Find Full Text PDFIncreased oxidative stress is implicated in the pathogenesis of experimental diabetic neuropathy, but translational evidence in recent-onset diabetes is scarce. We aimed to determine whether markers of systemic oxidative stress are associated with diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. In this cross-sectional study, we measured serum concentrations of extracellular superoxide dismutase (SOD3), thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) in 107 type 1 and 215 type 2 diabetes patients from the German Diabetes Study baseline cohort and 37 glucose-tolerant individuals (controls).
View Article and Find Full Text PDFNonalcoholic fatty liver disease is associated with hepatic insulin resistance and may result primarily from increased hepatic de novo lipogenesis (PRIM) or secondarily from adipose tissue lipolysis (SEC). We studied mice with hepatocyte- or adipocyte-specific SREBP-1c overexpression as models of PRIM and SEC. PRIM mice featured increased lipogenic gene expression in the liver and adipose tissue.
View Article and Find Full Text PDFType 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes.
View Article and Find Full Text PDFFor long the presence of insulin resistance in type 1 diabetes has been questioned. Detailed metabolic analyses revealed 12%-61% and up to 20% lower whole-body (skeletal muscle) and hepatic insulin sensitivity in type 1 diabetes, depending on the population studied. Type 1 diabetes patients feature impaired muscle adenosine triphosphate (ATP) synthesis and enhanced oxidative stress, predominantly relating to hyperglycemia.
View Article and Find Full Text PDFThe association of hepatic mitochondrial function with insulin resistance and non-alcoholic fatty liver (NAFL) or steatohepatitis (NASH) remains unclear. This study applied high-resolution respirometry to directly quantify mitochondrial respiration in liver biopsies of obese insulin-resistant humans without (n = 18) or with (n = 16) histologically proven NAFL or with NASH (n = 7) compared to lean individuals (n = 12). Despite similar mitochondrial content, obese humans with or without NAFL had 4.
View Article and Find Full Text PDFAlthough insulin resistance is known to underlie type 2 diabetes, its role in the development of type 1 diabetes has been gaining increasing interest. In a model of type 1 diabetes, the nonobese diabetic (NOD) mouse, we found that insulin resistance driven by lipid- and glucose-independent mechanisms is already present in the liver of prediabetic mice. Hepatic insulin resistance is associated with a transient rise in mitochondrial respiration followed by increased production of lipid peroxides and c-Jun N-terminal kinase activity.
View Article and Find Full Text PDFDiabetes is now regarded as an epidemic, with the population of patients expected to rise to 380 million by 2025. Tragically, this will lead to approximately 4 million people around the world losing their sight from diabetic retinopathy, the leading cause of blindness in patients aged 20 to 74 years. The risk of development and progression of diabetic retinopathy is closely associated with the type and duration of diabetes, blood glucose, blood pressure, and possibly lipids.
View Article and Find Full Text PDFObjective: Muscle insulin resistance has been implicated in the development of steatosis and dyslipidemia by changing the partitioning of postprandial substrate fluxes. Also, insulin resistance may be due to reduced mitochondrial function. We examined the association between mitochondrial activity, insulin sensitivity, and steatosis in a larger human population.
View Article and Find Full Text PDFWith the incidence, and prevalence of diabetes mellitus increasing worldwide, diabetic retinopathy is expected to reach epidemic proportions. The aim of this chapter is to introduce diabetic retinopathy, a leading cause of blindness in people of the working age. The clinical course of retinopathy, anatomical changes, its pathogenesis and current treatment are described, followed by an overview of the emerging drug therapies for the potential treatment of this sight-threatening complication of diabetes.
View Article and Find Full Text PDFThe chronic metabolic disorder diabetes mellitus is a fast-growing global problem with huge social, health, and economic consequences. It is estimated that in 2010 there were globally 285 million people (approximately 6.4% of the adult population) suffering from this disease.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is the leading cause of blindness amongst the working-age population, and diabetes accelerated cardiovascular disease (CVD) the commonest cause of death in diabetic patients. Although, there is evidence suggesting a close association between DR and CVD, particularly in patients with Type 2 diabetes, the pathophysiology underlying the link is unclear. Here we review common risk factors and pathogenic mechanisms linking DR and CVD, and aim to highlight the need for a more holistic view of the management of diabetes and its complications.
View Article and Find Full Text PDFIncreasing evidence suggests that chronic, sub-clinical inflammation plays an important role in the pathogenesis of diabetic retinopathy. We have established the potential role of the inflammatory enzyme, core 2 β-1, 6-N-acetylglucosaminyltransferase (C2GNT) in diabetic retinopathy. The present study was designed to explore the NADPH oxidase signaling pathway in the tumor necrosis factor-alpha (TNF-α)-induced activity of C2GNT in leukocytes.
View Article and Find Full Text PDFCurr Diabetes Rev
September 2010
The global diabetes burden is predicted to rise to 380 million by 2025 and would present itself as a major health challenge. However, both Type 1 and Type 2 diabetes increase the risk of developing micro-vascular complications and macro-vascular complications which in turn will have a devastating impact on quality of life of the patients and challenge health services Worldwide. The micro-vascular complications that affect small blood vessels are the leading cause of blindness (diabetic retinopathy) in the people of the working-age, end-stage renal disease (diabetic nephropathy) the most common cause of kidney failure today, and foot amputation (diabetic neuropathy) in patients with Type 1 and Type 2 diabetes.
View Article and Find Full Text PDF