Publications by authors named "Kirtana R"

Differential expression of genes involved in certain processes is a collaborative outcome of crosstalk between signalling molecules and epigenetic modifiers. In response to environmental stimulus, interplay between transcription factors and epigenetic modifiers together dictates the regulation of genes. MLLs and KDM5A are functionally antagonistic proteins, as one acts as a writer and the other erases the active chromatin mark, i.

View Article and Find Full Text PDF

Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3.

View Article and Find Full Text PDF

Understanding the molecular mechanism(s) of small compounds in cellular growth control are essential for using those against the disease(s). Oral cancers exhibit a very high mortality rate due to higher metastatic potential. Aberrant EGFR, RAR, HH signalling, enhanced [Ca] and oxidative stress are some of the important characteristics of oral cancer.

View Article and Find Full Text PDF

Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown.

View Article and Find Full Text PDF

Gene expression is influenced at many layers by a fine-tuned crosstalk between multiple extrinsic signalling pathways and intrinsic regulatory molecules that respond to environmental stimuli. Epigenetic modifiers like DNA methyltransferases, histone modifying enzymes and chromatin remodellers are reported to act as triggering factors in many scenarios by exhibiting their control over most of the cellular processes. These epigenetic players can either directly regulate gene expression or interact with some effector molecules that harmonize the expression of downstream genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation.

View Article and Find Full Text PDF

Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression.

View Article and Find Full Text PDF