Protists, an umbrella term first coined by Ernst Haeckel in 1866, are a vast collection of (primarily unicellular) eukaryotes that are "neither animals nor plants". This basic definition by exclusion has been exercised for centuries, even though recent advances have led to more rigorous taxonomic assignment of various protist groups. Pioneering comparative phylogenetic approaches have been applied to these organisms to reconstruct the deep branches of the eukaryotic tree, revealing essential clues about early eukaryotic evolution.
View Article and Find Full Text PDFDiverse animal species exhibit highly stereotyped behavioral actions and locomotor sequences as they explore their natural environments. In many such cases, the neural basis of behavior is well established, where dedicated neural circuitry contributes to the initiation and regulation of certain response sequences. At the microscopic scale, single-celled eukaryotes (protists) also exhibit remarkably complex behaviors and yet are completely devoid of nervous systems.
View Article and Find Full Text PDFCiliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems.
View Article and Find Full Text PDFLiving organisms routinely navigate their surroundings in search of better conditions, more food, or to avoid predators. Typically, animals do so by integrating sensory cues from the environment with their locomotor apparatuses. For single cells or small organisms that possess motility, fundamental physical constraints imposed by their small size have led to alternative navigation strategies that are specific to the microscopic world.
View Article and Find Full Text PDFMotility is an essential factor for an organism's survival and diversification. With the advent of novel single-cell technologies, analytical frameworks, and theoretical methods, we can begin to probe the complex lives of microscopic motile organisms and answer the intertwining biological and physical questions of how these diverse lifeforms navigate their surroundings. Herein, we summarize the main mechanisms of microscale motility and give an overview of different experimental, analytical, and mathematical methods used to study them across different scales encompassing the molecular-, individual-, to population-level.
View Article and Find Full Text PDFThe movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell.
View Article and Find Full Text PDFLocomotion at the microscale is remarkably sophisticated. Microorganisms have evolved diverse strategies to move within highly viscous environments, using deformable, propulsion-generating appendages such as cilia and flagella to drive helical or undulatory motion. In single-celled algae, these appendages can be arranged in different ways around an approximately 10 m long cell body, and coordinated in distinct temporal patterns.
View Article and Find Full Text PDFNew mathematical model reveals how the flagella of some single-celled algae generate a lasso-like beat pattern that propels the cell through water.
View Article and Find Full Text PDFHelical swimming is a ubiquitous strategy for motile cells to generate self-gradients for environmental sensing. The model biflagellate Chlamydomonas reinhardtii rotates at a constant 1-2 Hz as it swims, but the mechanism is unclear. Here, we show unequivocally that the rolling motion derives from a persistent, nonplanar flagellar beat pattern.
View Article and Find Full Text PDFAll living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation.
View Article and Find Full Text PDFBeating flagella exhibit a variety of synchronization modes. This synchrony has long been attributed to hydrodynamic coupling between the flagella. However, recent work with flagellated algae indicates that a mechanism internal to the cell, through the contractile fibres connecting the flagella basal bodies, must be at play to actively modulate flagellar synchrony.
View Article and Find Full Text PDFHeterodimeric motor organization of kinesin-II is essential for its function in anterograde IFT in ciliogenesis. However, the underlying mechanism is not well understood. In addition, the anterograde IFT velocity varies significantly in different organisms, but how this velocity affects ciliary length is not clear.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2020
Living creatures exhibit a remarkable diversity of locomotion mechanisms, evolving structures specialized for interacting with their environment. In the vast majority of cases, locomotor behaviours such as flying, crawling and running are orchestrated by nervous systems. Surprisingly, microorganisms can enact analogous movement gaits for swimming using multiple, fast-moving cellular protrusions called cilia and flagella.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2020
The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate , chosen for its large size, complex ciliary organization, and capacity for cellular regeneration.
View Article and Find Full Text PDFCilia are specialized cellular organelles that are united in structure and implicated in diverse key life processes across eukaryotes. In both unicellular and multicellular organisms, variations on the same ancestral form mediate sensing, locomotion and the production of physiological flows. As we usher in a new, more interdisciplinary era, the way we study cilia is changing.
View Article and Find Full Text PDFEven single-celled eukaryotes are capable of highly complex behaviors. A new study reveals how one unicellular predator actively manipulates and remodels its unique cytoskeletal morphology to achieve rapid shape changes and a remarkable hunting strategy.
View Article and Find Full Text PDFPropulsion by slender cellular appendages called cilia and flagella is an ancient means of locomotion. Unicellular organisms evolved myriad strategies to propel themselves in fluid environments, often involving significant differences in flagella number, localisation and modes of actuation. Remarkably, these appendages are highly conserved, occurring in many complex organisms such as humans, where they may be found generating physiological flows when attached to surfaces (e.
View Article and Find Full Text PDFActive living organisms exhibit behavioral variability, partitioning between fast and slow dynamics. Such variability may be key to generating rapid responses in a heterogeneous, unpredictable environment wherein cellular activity effects continual exchanges of energy fluxes. We demonstrate a novel, noninvasive strategy for revealing nonequilibrium control of swimming-specifically, in an octoflagellate microalga.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2016
Cilia and flagella often exhibit synchronized behavior; this includes phase locking, as seen in Chlamydomonas, and metachronal wave formation in the respiratory cilia of higher organisms. Since the observations by Gray and Rothschild of phase synchrony of nearby swimming spermatozoa, it has been a working hypothesis that synchrony arises from hydrodynamic interactions between beating filaments. Recent work on the dynamics of physically separated pairs of flagella isolated from the multicellular alga Volvox has shown that hydrodynamic coupling alone is sufficient to produce synchrony.
View Article and Find Full Text PDFThe eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C.
View Article and Find Full Text PDFFlows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory.
View Article and Find Full Text PDFIn a multitude of life's processes, cilia and flagella are found indispensable. Recently, the biflagellated chlorophyte alga Chlamydomonas has become a model organism for the study of ciliary motility and synchronization. Here, we use high-speed, high-resolution imaging of single pipette-held cells to quantify the rich dynamics exhibited by their flagella.
View Article and Find Full Text PDFGroups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C.
View Article and Find Full Text PDF