Accurate identification and estimation of the population densities of microscopic, soil-dwelling plant-parasitic nematodes (PPNs) are essential, as PPNs cause significant economic losses in agricultural production systems worldwide. This study presents a comprehensive review of emerging techniques used for the identification of PPNs, including morphological identification, molecular diagnostics such as polymerase chain reaction (PCR), high-throughput sequencing, meta barcoding, remote sensing, hyperspectral analysis, and image processing. Classical morphological methods require a microscope and nematode taxonomist to identify species, which is laborious and time-consuming.
View Article and Find Full Text PDFRoot-lesion nematodes ( spp.) and arbuscular mycorrhizal fungi (AMF) occupy the same ecological niche in the phytobiome of many agriculturally important crops. Arbuscular mycorrhizal fungi can enhance the resistance or tolerance of a plant to and previous studies have been undertaken to investigate the relationship between these organisms.
View Article and Find Full Text PDFThe root lesion nematode (RLN) species and are widely distributed within cropping regions of Australia and have been shown to limit grain production. Field experiments conducted to compare the performance of cultivars in the presence of RLNs investigate management options for growers by identifying cultivars with resistance, by limiting nematode reproduction, and tolerance, by yielding well in the presence of nematodes. A novel experimental design approach for RLN experiments is proposed where the observed RLN density, measured prior to sowing, is used to condition the randomization of cultivars to field plots.
View Article and Find Full Text PDF