Publications by authors named "Kirstin Kucka"

Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8 T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF)-inducible 14 (Fn14) activates the classical and alternative NFκB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) signaling pathway but also enhances tumor necrosis factor (TNF)-induced cell death. Fn14 expression is upregulated in non-hematopoietic cells during tissue injury and is also often highly expressed in solid cancers. In view of the latter, there were and are considerable preclinical efforts to target Fn14 for tumor therapy, either by exploiting Fn14 as a target for antibodies with cytotoxic activity (e.

View Article and Find Full Text PDF

Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough.

View Article and Find Full Text PDF

A strategy to broaden the applicability of checkpoint inhibitors is the combined use with antibodies targeting the immune stimulatory receptors CD40 and 41BB. However, the use of anti-CD40 and anti-41BB antibodies as agonists is problematic in two ways. First, anti-CD40 and anti-41BB antibodies need plasma membrane-associated presentation by FcγR binding to exert robust agonism but this obviously limits their immune stimulatory efficacy by triggering ADCC, CDC or anti-inflammatory FcγRIIb activities.

View Article and Find Full Text PDF

In the early 1990s, it has been described that LTα and LTβ form LTαβ and LTαβ heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ-LTβR system has been intensively studied while the LTαβ-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTαβ-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTαβ interacts not only with TNFR1 but also with TNFR2.

View Article and Find Full Text PDF

With the exception of a few signaling incompetent decoy receptors, the receptors of the tumor necrosis factor receptor superfamily (TNFRSF) are signaling competent and engage in signaling pathways resulting in inflammation, proliferation, differentiation, and cell migration and also in cell death induction. TNFRSF receptors (TNFRs) become activated by ligands of the TNF superfamily (TNFSF). TNFSF ligands (TNFLs) occur as trimeric type II transmembrane proteins but often also as soluble ligand trimers released from the membrane-bound form by proteolysis.

View Article and Find Full Text PDF

Quantitative analysis of the binding of tumor necrosis factor (TNF) superfamily ligands (TNFLs) to TNF receptor superfamily receptors (TNFRs) is of crucial relevance for the understanding of the mechanisms of TNFR activation. Ligand binding studies are also a basic method required for the development and characterization of agonists and antagonists of TNFRs. TNFL-induced formation of fully active TNFR signaling complexes is a complex process.

View Article and Find Full Text PDF

Motivation: Clustering enables TNF receptors to stimulate intracellular signaling. The differential soluble ligand-induced clustering behavior of TNF receptor 1 (TNFR1) and TNFR2 was modeled. A structured, rule-based model implemented ligand-independent pre-ligand binding assembly domain (PLAD)-mediated homotypic low affinity interactions of unliganded and liganded TNF receptors.

View Article and Find Full Text PDF

T cell-engaging immunotherapies are changing the landscape of current cancer care. However, suitable target antigens are scarce, restricting these strategies to very few tumor types. Here, we report on a T cell-engaging antibody derivative that comes in two complementary halves and addresses antigen combinations instead of single molecules.

View Article and Find Full Text PDF