Stromal progenitor cells (SPC) exhibit immunosuppressive effects in vitro that have led to speculation regarding their capacity to evade host immune recognition and to treat autoimmune diseases and gravt-versus-host disease. However, there is little in vivo experimental data to support these immunologic claims. To assess immune recognition of SPC in vivo, we evaluated the immune response of animals transplanted with SPC.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) express low immunogenicity and demonstrate immunomodulatory properties in vitro that may safely allow their transplantation into unrelated immunocompetent recipients without the use of pharmacologic immunosuppression. To test this hypothesis, three groups of baboons (three animals per group) were injected as follows: group 1 animals were injected with vehicle; group 2 animals were injected IV with DiI-labeled MSCs (5 x 106 MSCs/kg body weight) followed 6 weeks later by IM injections of DiO-labeled MSCs (5 x 10(6) MSCs/kg) from the same donor; and group 3 animals were treated similarly as group 2 except that MSCs were derived from two different donors. Muscle biopsies, performed 4 weeks after the second injection of MSCs, showed persistence of DiO-labeled MSCs in 50% of the recipients.
View Article and Find Full Text PDFHuman mesenchymal stem cells (MSCs) were evaluated for their ability to activate allogeneic T cells in cell mixing experiments. Phenotypic characterization of MSCs by flow cytometry showed expression of MHC Class I alloantigens, but minimal expression of Class II alloantigens and costimulatory molecules, including CD80 (B7-1), CD86 (B7-2), and CD40. T cells purified from peripheral blood mononuclear cells (PBMCs) did not proliferate to allogeneic MSCs.
View Article and Find Full Text PDFThe field of stem cell biology continues to evolve with the ongoing characterization of multiple types of stem cells with their inherent potential for experimental and clinical application. Mesenchymal stem cells (MSC) are one of the most promising stem cell types due to their availability and the relatively simple requirements for in vitro expansion and genetic manipulation. Multiple populations described as "MSCs" have now been isolated from various tissues in humans and other species using a variety of culture techniques.
View Article and Find Full Text PDF