In the midst of an ongoing biodiversity crisis, much research has focused on species losses and their impacts on ecosystem functioning. The functional consequences (ecosystem response) of shifts in communities are shaped not only by changes in species richness, but also by compositional shifts that result from species losses and gains. Species differ in their contribution to ecosystem functioning, so species identity underlies the consequences of species losses and gains on ecosystem functions.
View Article and Find Full Text PDFMoonlight structures activity patterns of many nocturnal species. Bright moonlight often limits the activity of nocturnal prey, but dense vegetation weakens this effect. Using 8 years of live-trapping data, we asked whether reintroduced megaherbivores (Bison bison) indirectly altered moonlight avoidance by small mammals in tallgrass prairies.
View Article and Find Full Text PDFA primary goal of ecological restoration is to increase biodiversity in degraded ecosystems. However, the success of restoration ecology is often assessed by measuring the response of a single functional group or trophic level to restoration, without considering how restoration affects multitrophic interactions that shape biodiversity. An ecosystem-wide approach to restoration is therefore necessary to understand whether animal responses to restoration, such as changes in biodiversity, are facilitated by changes in plant communities (plant-driven effects) or disturbance and succession resulting from restoration activities (management-driven effects).
View Article and Find Full Text PDF