Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally.
View Article and Find Full Text PDFUVB-induced lesions in mammalian cellular DNA can, through the process of mutagenesis, lead to carcinogenesis. However, eukaryotic cells have evolved complex mechanisms of genomic surveillance and DNA damage repair to counteract the effects of UVB radiation. We show that following UVB DNA damage, there is an overall inhibition of protein synthesis and translational reprogramming.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are noncoding RNAs that base pair imperfectly to homologous regions in target mRNAs and negatively influence the synthesis of the corresponding proteins. Repression is mediated by a number of mechanisms, one of which is the direct inhibition of protein synthesis. Surprisingly, previous studies have suggested that two mutually exclusive mechanisms exist, one acting at the initiation phase of protein synthesis and the other at a postinitiation event.
View Article and Find Full Text PDFThe length of the poly(A) tail of an mRNA plays an important role in translational efficiency, mRNA stability and mRNA degradation. Regulated polyadenylation and deadenylation of specific mRNAs is involved in oogenesis, embryonic development, spermatogenesis, cell cycle progression and synaptic plasticity. Here we report a new technique to analyse the length of poly(A) tails and to separate a mixed population of mRNAs into fractions dependent on the length of their poly(A) tails.
View Article and Find Full Text PDFThe P-Rex family of guanine-nucleotide exchange factors (GEFs) are activators of the small GTPase Rac (Donald et al., 2004; Rosenfeldt et al., 2004; Welch et al.
View Article and Find Full Text PDFRac GTPases regulate cytoskeletal structure, gene expression, and reactive oxygen species (ROS) production. Rac2-deficient neutrophils cannot chemotax, produce ROS, or degranulate upon G protein-coupled receptor (GPCR) activation. Deficiency in PI3Kgamma, an upstream regulator of Rac, causes a similar phenotype.
View Article and Find Full Text PDFP-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac. We have investigated here the mechanisms of stimulation of P-Rex1 Rac-GEF activity by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and the Gbetagamma subunits of heterotrimeric G proteins. We show that a P-Rex1 mutant lacking the PH domain (DeltaPH) cannot be stimulated by PtdIns(3,4,5)P3, which implies that the PH domain confers PtdIns(3,4,5)P3 regulation of P-Rex1 Rac-GEF activity.
View Article and Find Full Text PDFWe have identified a new guanine-nucleotide exchange factor, P-Rex2, and cloned it from human skeletal muscle and brain libraries. It has widespread tissue distribution but is not expressed in neutrophils. P-Rex2 is a 183 kDa protein that activates the small GTPase Rac and is regulated by phosphatidylinositol (3,4,5)-trisphosphate and the beta gamma subunits of heterotrimeric G proteins in vitro and in vivo.
View Article and Find Full Text PDFCurcumin, the major yellow pigment in turmeric, prevents the development of adenomas in the intestinal tract of the C57Bl/6J Min/+ mouse, a model of human familial APC. To aid the rational development of curcumin as a colorectal cancer-preventive agent, we explored the link between its chemopreventive potency in the Min/+ mouse and levels of drug and metabolites in target tissue and plasma. Mice received dietary curcumin for 15 weeks, after which adenomas were enumerated.
View Article and Find Full Text PDF