Publications by authors named "Kirsten Switzer"

Although the phenomenon that omega-3 polyunsaturated fatty acids (n-3 PUFAs) shows to have a beneficial effect in patients suffering from multiple sclerosis (MS) and other autoimmune diseases has been empirically well-documented, the molecular mechanisms that underline the anti-inflammatory effects of n-3 PUFAs are yet to be understood. In experimental autoimmune encephalomyelitis (EAE), a model for MS, we show that one of the underlying mechanisms by which dietary docosahexaenoic acid (DHA) exerts its anti-inflammatory effect is regulating the functional activities of dendritic cells (DCs). In DHA-treated EAE mice, DCs acquire a regulatory phenotype characterized by low expression of co-stimulatory molecules, decreased production of pro-inflammatory cytokines, and enhanced capability of regulatory T-cell induction.

View Article and Find Full Text PDF

The CD56 antigen (NCAM-1) is highly expressed on several malignancies with neuronal or neuroendocrine differentiation, including small-cell lung cancer and neuroblastoma, tumor types for which new therapeutic options are needed. We hypothesized that CD56-specific chimeric antigen receptor (CAR) T cells could target and eliminate CD56-positive malignancies. Sleeping Beauty transposon-generated CD56R-CAR T cells exhibited αβT-cell receptors, released antitumor cytokines upon co-culture with CD56 tumor targets, demonstrated a lack of fratricide, and expression of cytolytic function in the presence of CD56 stimulation.

View Article and Find Full Text PDF

Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR T cells with preserved T potential using the Sleeping Beauty platform.

View Article and Find Full Text PDF

Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race.

View Article and Find Full Text PDF

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity.

View Article and Find Full Text PDF

Purpose: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma.

Experimental Design: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis.

View Article and Find Full Text PDF

Purpose: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved.

Experimental Design: Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing.

View Article and Find Full Text PDF

Investigational therapy can be successfully undertaken using viral- and nonviral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently, the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity.

View Article and Find Full Text PDF

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets.

View Article and Find Full Text PDF

Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions.

View Article and Find Full Text PDF

Copolymer-I (COP-I) is an unique immune regulatory polymer that has been shown to suppress experimental autoimmune encephalomyelitis (EAE) and is a treatment option for multiple sclerosis (MS). To investigate whether its immune suppressive effects can be extended to other autoimmune diseases, we treated mice with COP-I during the induction of collagen-induced arthritis (CIA). Our results show that COP-I treatment exacerbated CIA, leading to faster onset, more severe and longer-lasting disease.

View Article and Find Full Text PDF

B cells play a pathogenic or regulatory role in many autoimmune diseases through production of autoantibodies, cytokine production, and Ag presentation. However, the mechanisms that regulate these B cell functions under different autoimmune settings remain unclear. In the current study, we found that when B cells overexpress an antiapoptotic gene, Bcl(XL), they significantly increased production of IFN-gamma and enhanced Th1 response.

View Article and Find Full Text PDF

Decline in cellular immunity in aging compromises protection against infectious diseases and leads to the increased susceptibility of the elderly to infection. In particular, Ag-specific cytotoxic T lymphocyte (CTL) response against virus is markedly reduced in an aged immune system. It is of great importance to explore novel strategy in eliciting effective antiviral CTL activity in the elderly.

View Article and Find Full Text PDF

In aging, both primary and secondary antibody responses are impaired. One of the most notable changes in age-associated immune deficiency is the diminished germinal center (GC) reaction. This impaired GC response reduces antibody affinity maturation, decreases memory B cell development, and prevents the establishment of long-term antibody-forming cells in the bone marrow.

View Article and Find Full Text PDF

We have demonstrated that downregulation of proliferation by CD4(+) T-cells in mice fed n-3 PUFA diets is dependent on the involvement of CD28. Therefore, we hypothesized that the balance of co-stimulatory and downregulatory properties of CD28 and CTLA-4, respectively, would be altered by diet. Mice were fed a control corn oil (CO)-enriched diet devoid of n-3 PUFA, or diets enriched with either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 14d.

View Article and Find Full Text PDF

Dietary n-3 PUFA have been shown to attenuate T-cell-mediated inflammation, in part, by suppressing T-cell activation and proliferation. n-3 PUFA have also been shown to promote apoptosis, another important mechanism for the prevention of chronic inflammation by maintaining T-cell homeostasis through the contraction of populations of activated T cells. Recent studies have specifically examined Fas death receptor-mediated activation-induced cell death (AICD), since it is the form of apoptosis associated with peripheral T-cell deletion involved in immunological tolerance and T-cell homeostasis.

View Article and Find Full Text PDF

In recent years, our understanding of the plasma membrane has changed considerably as our knowledge of lipid microdomains has expanded. Lipid microdomains include structures known as lipid rafts and caveolae, which are readily identified by their unique lipid constituents. Cholesterol, sphingolipids and phospholipids with saturated fatty acyl chain moieties are highly enriched in these lipid microdomains.

View Article and Find Full Text PDF

Dietary n-3 PUFAs have been shown to attenuate T-cell-mediated inflammation. To investigate whether dietary n-3 PUFAs promote activation-induced cell death (AICD) in CD4+ T-cells induced in vitro to a polarized T-helper1 (Th1) phenotype, C57BL/6 mice were fed diets containing either 5% corn oil (CO; n-6 PUFA control) or 4% fish oil (FO) plus 1% CO (n-3 PUFA) for 2 weeks. Splenic CD4+ T-cells were cultured with alpha-interleukin-4 (alphaIL-4), IL-12, and IL-2 for 2 days and then with recombinant (r) IL-12 and rIL-2 for 3 days in the presence of diet-matched homologous mouse serum (HMS) to prevent loss of cell membrane fatty acids, or with fetal bovine serum.

View Article and Find Full Text PDF

Previous studies showing dietary (n-3) polyunsaturated fatty acids (PUFA) attenuate T cell immune-mediated inflammatory diseases led us to hypothesize that (n-3) PUFA promote activation-induced cell death (AICD) in T cells. Because T cell subsets display a differential resistance to AICD, we compared the effects of (n-3) PUFA feeding on T cells stimulated in vitro to express different cytokine profiles. Mice were fed either diets lacking (n-3) PUFA (control) or (n-3) PUFA-containing diets for 14 d.

View Article and Find Full Text PDF

We have previously demonstrated that immunoglobulin A (IgA)(-/-) knockout (KO) mice exhibit levels of susceptibility to influenza virus infection that are similar to those of their normal IgA(+/+) littermates. To understand the mechanism of this apparent mucosal immunity without IgA, immunoglobulin isotype and T helper 1 (Th1)-type [interferon-gamma (IFN-gamma)] and Th2-type [interleukin (IL)-4, IL-5)] cytokine responses to influenza vaccine were evaluated. Intranasal immunization with influenza virus subunit vaccine plus cholera toxin/cholera toxin B subunit (CT/CTB) induced significant influenza virus-specific immunoglobulin G (IgG) antibody in the serum and nasal passages of both IgA(-/-) and IgA(+/+) mice, while IgA antibodies were induced only in IgA(+/+) mice.

View Article and Find Full Text PDF