Case Stud Chem Environ Eng
December 2022
The COVID-19 pandemic highlighted a wide range of public health system challenges for infectious disease surveillance. The discovery that the SARS-CoV-2 virus was shed in feces and can be characterized using PCR-based testing of sewage samples offers new possibilities and challenges for wastewater surveillance (WWS). However, WWS standardization of practices is needed to provide actionable data for a public health response.
View Article and Find Full Text PDFAlthough several genome editing options are available, CRISPR/Cas9 is one of the most commonly used systems for protein and advanced therapies. There are some long-term data regarding genomic and phenotypic stability, however, information is sparse. Flow cytometry can offer a method to characterize these edited cells for longitudinal studies.
View Article and Find Full Text PDFCorrection for 'Effect of hydrogel material composition on hBMSC differentiation into zone-specific neo-cartilage: engineering human articular cartilage-like tissue with spatially varying properties' by Kirsten Parratt et al., J. Mater.
View Article and Find Full Text PDFBiological tissues are complex structures with spatially distinct cellular compositions, architecture, and biochemical and mechanical properties. Therefore, it is imperative that biomaterial scaffolds which serve as frameworks for engineering tissue structures contain spatially-varying cues to differentiate encapsulated progenitor cells into distinct, spatially-organized phenotypes. Human articular cartilage consists of three spatially distinct zones: superficial, transitional, and middle, which have unique extracellular matrix (ECM) compositions, chondrocyte phenotypes, and mechanical properties.
View Article and Find Full Text PDFStudying cell behavior within 3D material niches is key to understanding cell biology in health and diseases, and developing biomaterials for regenerative medicine applications. Current approaches to studying these cell-material niches have low throughput and can only analyze a few replicates per experiment resulting in reduced measurement assurance and analytical power. Here, we report 3D material cytometry (3DMaC), a novel high-throughput method based on microfabricated, shape-specific 3D cell-material niches and imaging cytometry.
View Article and Find Full Text PDFTherapeutic cells hold tremendous promise in treating currently incurable, chronic diseases since they perform multiple, integrated, complex functions in vivo compared to traditional small-molecule drugs or biologics. However, they also pose significant challenges as therapeutic products because (a) their complex mechanisms of actions are difficult to understand and (b) low-cost bioprocesses for large-scale, reproducible manufacturing of cells have yet to be developed. Immunotherapies using T cells and dendritic cells (DCs) have already shown great promise in treating several types of cancers, and human mesenchymal stromal cells (hMSCs) are now extensively being evaluated in clinical trials as immune-modulatory cells.
View Article and Find Full Text PDFSome of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery.
View Article and Find Full Text PDF