Background: In the field of medical and scientific research, radionuclides are used to investigate various physiological and pathological processes. PRISMAP - the European medical radionuclide programme was created to bring together production facilities including intense neutron sources, an isotope mass separation facility, high-power accelerators, biomedical research institutes, and hospitals to support medical research. The aim of this article is to introduce readers with the current status of innovative radionuclides in Europe.
View Article and Find Full Text PDFBackground: In order to support the ongoing research across Europe to facilitate access to novel radionuclides, the PRISMAP consortium (European medical radionuclides programme) was established to offer the broadest catalog of non-conventional radionuclides for medical and translational research. The aim of this article is to introduce readers with current status of novel radionuclides in Europe.
Main Body: A consortium questionnaire was disseminated through the PRISMAP consortium and user community, professional associations and preclinical/clinical end users in Europe and the current status of clinical end-users in nuclear medicine were identified.
Encouraging results from targeted α-therapy have received significant attention from academia and industry. However, the limited availability of suitable radionuclides has hampered widespread translation and application. In the present review, we discuss the most promising candidates for clinical application and the state of the art of their production and supply.
View Article and Find Full Text PDFNuclear receptors initiate transcription, interact with regulatory proteins, and are influenced by hormones, drugs, and pollutants. Herein, we discover ligand-specific mobility patterns of human estrogen receptor-alpha (ER) in living cells using diffusion-time distribution analysis (DDA). This novel method, based on fluorescence correlation spectroscopy (FCS), is especially suited to unraveling multiple protein interactions in vivo at native expression levels.
View Article and Find Full Text PDFStructure and orientation of molecules are key properties of functionalized surfaces. Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), here we investigate how to modulate these parameters upon the immobilization process varying the conditions of self-assembly. The molecule of interest, a template-assembled synthetic protein (TASP), consists of a central peptide ring with orthogonally arranged residues.
View Article and Find Full Text PDFThe combination of self-assembly and regioselective surface chemistry has made it possible to immobilize peptide recognition sites 1 on a template attached to a gold surface. Each of the seven individual reaction steps, including the final functional biomolecular recognition, was controlled in situ with surface-sensitive detection techniques. The presented strategy is of general importance for the formation of complex supramolecular structures with biologically interesting functionalities at the interfaces.
View Article and Find Full Text PDF