Publications by authors named "Kirsten K Coe"

Article Synopsis
  • Poikilohydric plants can dry out and rehydrate, and scientists want to measure how much carbon they gain or lose during these cycles.
  • They created a special setup to monitor how different types of moss react to being dry or wet and found that field-collected moss loses a lot of carbon while lab-grown moss gains carbon quickly when watered.
  • This research helps us understand how these plants deal with water stress, which is important for studying climate change and how plants survive in different environments.
View Article and Find Full Text PDF
Article Synopsis
  • Bryophytes are significant photoautotrophs that play key roles in water retention, carbon fixation, and nitrogen cycling across various ecosystems including forests, tundras, and deserts.
  • Research highlights the importance of understanding how climate change affects bryophytes, as they can both buffer ecosystems from changes and face survival challenges due to unknown tolerance thresholds.
  • As ecosystems shift due to climate change, the influence of bryophytes on global biogeochemical cycles may change, potentially altering the magnitude of their impact on ecosystem functions.
View Article and Find Full Text PDF

Climate change is expanding drylands even as land use practices degrade them. Representing ∼40% of Earth's terrestrial surface, drylands rely on biological soil crusts (biocrusts) for key ecosystem functions including soil stability, biogeochemical cycling, and water capture. Understanding how biocrusts adapt to climate change is critical to understanding how dryland ecosystems will function with altered climate.

View Article and Find Full Text PDF

With global climate change, water scarcity threatens whole agro/ecosystems. The desert moss Syntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequenced S.

View Article and Find Full Text PDF

Premise: Desiccation tolerance (DT) is a widespread phenomenon among land plants, and variable ecological strategies for DT are likely to exist. Using Syntrichia caninervis, a dryland moss and model system used in DT studies, we hypothesized that DT is lowest in juvenile (protonemal) tissues, highest in asexual reproductive propagules (gemmae), and intermediate in adults (shoots). We tested the long-standing hypothesis of an inherent constitutive strategy of DT in this species.

View Article and Find Full Text PDF

Plant functional trait analyses have focused almost exclusively on vascular plants, but bryophytes comprise ancient and diverse plant lineages that have widespread global distributions and important ecological functions in terrestrial ecosystems. We examined a diverse clade of dryland mosses, Syntrichia, and studied carbon balance during a precipitation event (C-balance), a functional trait related to physiological functioning, desiccation tolerance, survival, and ecosystem carbon and nitrogen cycling. We examined variability in C-balance among 14 genotypes of Syntrichia and measured an additional 10 physiological and 13 morphological traits at the cell, leaf, shoot, and clump level.

View Article and Find Full Text PDF

Fluctuations in mean annual precipitation (MAP) will strongly influence the ecology of dryland ecosystems in the future, yet, because individual precipitation events drive growth and resource availability for many dryland organisms, changes in intra-annual precipitation may disproportionately influence future dryland processes. This work examines the hypothesis that intra-annual precipitation changes will drive dryland productivity to a greater extent than changes to MAP. To test this hypothesis, we created a physiology-based model to predict the effects of precipitation change on a widespread biocrust moss that regulates soil structure, water retention, and nutrient cycling in drylands.

View Article and Find Full Text PDF

Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous to desert ecosystems, play an array of ecological roles, and display a strong sensitivity to environmental changes. Crust mosses are particularly responsive to changes in precipitation and exhibit rapid declines in biomass and mortality following the addition of small rainfall events.

View Article and Find Full Text PDF

In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO₂ Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO₂, and the effect of high temperature events on the photosynthetic performance of moss grown in CO₂-enriched air. Moss exposed to elevated CO₂ exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance.

View Article and Find Full Text PDF