Publications by authors named "Kirsten Exall"

Interactions of nine sulfonamide antibiotics (sulfadoxine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfadiazine, sulfamethazine, sulfacetamide, sulfaguanidine, and sulfanilamide) with cetyltrimethylamonium bromide (CTABr) micelles were examined using (1)H NMR spectroscopy. Seven of the nine provided a significant change in the (1)H NMR chemical shift such that the magnitude and direction (upfield vs downfield) of the chemical shift could be used to propose a locus and orientation of the sulfonamide within the micelle structure. The magnitude of the chemical shift was used to estimate the binding constant for seven sulfonamides with CTABr micelles, providing values and an overall pattern consistent with previous studies of these sulfonamides.

View Article and Find Full Text PDF

To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB).

View Article and Find Full Text PDF

The speciation of aluminum in solutions of alum and various prehydrolyzed, aluminum-based water treatment coagulants was investigated by 27Al NMR at 5 degrees C and 25 degrees C. Alum solutions were seen to contain only mononuclear species including an AlSO4(+) complex, while the prehydrolyzed coagulant solutions contained polynuclear aluminum species, as well. The relative proportions of both polynuclear species and AlSO4(+) complex decreased in cold water.

View Article and Find Full Text PDF