Introduction: It is worth noting the limitations in sensitivity of the existing biomarkers carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) in detection of colorectal cancer (CRC). In our study, we address the performance of the liquid biopsy biomarker "methylated septin 9" (mSEPT9) in the detection and disease surveillance of CRC.
Materials And Methods: The monocentric prospective survey encompassed 120 patients diagnosed with CRC who underwent planned curative resection between December 2018 and December 2020.
Gelatin methacryloyl (GM) hydrogels have been investigated for almost 20 years, especially for biomedical applications. Recently, strengthening effects of a sequential cross-linking procedure, whereby GM hydrogel precursor solutions are cooled before chemical cross-linking, were reported. It was hypothesized that physical and enhanced chemical cross-linking of the GM hydrogels contribute to the observed strengthening effects.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1007/s10856-020-06463-w.
View Article and Find Full Text PDFBio-based coatings and release systems for pro-angiogenic growth factors are of interest to overcome insufficient vascularization and bio-integration of implants. This study compares different biopolymer-based coatings on polyethylene terephthalate (PET) membranes in terms of coating homogeneity and stability, coating thickness in the swollen state, endothelial cell adhesion, vascular endothelial growth factor (VEGF) release and pro-angiogenic properties. Coatings consisted of carbodiimide cross-linked gelatin type A (GelA), type B (GelB) or albumin (Alb), and heparin (Hep), or they consisted of radically cross-linked gelatin methacryloyl-acetyl (GM5A5) and heparin methacrylate (HepM5).
View Article and Find Full Text PDFBiobased hydrogels are considered to mimic native extracellular matrix due to their high water content and are considered as adequate matrices for cell encapsulation. However, the equilibrium degree of swelling (EDS) and stiffness of simple hydrogel formulations are typically confined: Increasing polymer concentration results in increasing stiffness and simultaneously decreasing EDS. The aim of this contribution was to decouple this standard correlation between polymer content, stiffness and EDS as well as the assembly of hydrogels with graded composition of hydrogels by layer-wise printing.
View Article and Find Full Text PDFChemically cross-linkable gelatin methacryloyl (GM) derivatives are getting increasing attention regarding biomedical applications. Thus, thorough investigations are needed to achieve full understanding and control of the physico-chemical behavior of these promising biomaterials. We previously introduced gelatin methacryloyl acetyl (GMA) derivatives, which can be used to control physical network formation (solution viscosity, sol-gel transition) independently from chemical cross-linking by variation of the methacryloyl-to-acetyl ratio.
View Article and Find Full Text PDFGelatin methacryloyl (acetyl) (GM(A)) is increasingly investigated for various applications in life sciences and medicine, for example, drug release or tissue engineering. Gelatin type A and type B are utilized for G M(A) and G M(A) preparation, but the impact of gelatin raw material on modification reaction and resulting polymer properties is rather unknown so far. Therefore, the degrees of modification (DMA) and physicochemical properties of five G M(A) and G M(A) derivatives are compared: The degrees of methacryloylation (0.
View Article and Find Full Text PDFSize and function of bioartificial tissue models are still limited due to the lack of blood vessels and dynamic perfusion for nutrient supply. In this study, we evaluated the use of cytocompatible methacryl-modified gelatin for the fabrication of a hydrogel-based tube by dip-coating and subsequent photo-initiated cross-linking. The wall thickness of the tubes and the diameter were tuned by the degree of gelatin methacryl-modification and the number of dipping cycles.
View Article and Find Full Text PDFAlthough state-of-the-art treatments of respiratory failure clearly have made some progress in terms of survival in patients suffering from severe respiratory system disorders, such as acute respiratory distress syndrome (ARDS), they failed to significantly improve the quality of life in patients with acute or chronic lung failure, including severe acute exacerbations of chronic obstructive pulmonary disease or ARDS as well. Limitations of standard treatment modalities, which largely rely on conventional mechanical ventilation, emphasize the urgent, unmet clinical need for developing novel (bio)artificial respiratory assist devices that provide extracorporeal gas exchange with a focus on direct extracorporeal CO2 removal from the blood. In this review, we discuss some of the novel concepts and critical prerequisites for such respiratory lung assist devices that can be used with an adequate safety profile, in the intensive care setting, as well as for long-term domiciliary therapy in patients with chronic ventilatory failure.
View Article and Find Full Text PDFThe coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles.
View Article and Find Full Text PDFLight-induced release systems can be triggered remotely and are of interest for many controlled release applications due to the possibility for spatio-temporal release control. In this study a biotin-functionalized photocleavable macromer is incorporated with an o-nitrobenzyl moiety into gelatin methacryloyl(-acetyl) hydrogels via radical cross-linking. Stronger immobilization of streptavidin-coupled horseradish peroxidase occurs in linker-functionalized hydrogels compared to pure gelatin methacryloyl(-acetyl) hydrogels, and a controlled release of the streptavidin conjugate upon UV-irradiation is possible.
View Article and Find Full Text PDFGelatin hydrogels are used as tissue engineering scaffolds and systems for controlled release due to their inherent biodegradability and biocompatibility. In this study gelatin methacryloyl(-acetyl) (GM/A) with various degrees of methacryloylation (DM) and methacryl-modified heparin (HepM) were cross-linked radically via thermal-redox initiation. Investigation of gel yields (79.
View Article and Find Full Text PDFCross-linkable gelatin methacryloyl (GM) is widely used for the generation of artificial extracellular matrix (ECM) in tissue engineering. However, the quantification of modified groups in GM is still an unsolved issue, although this is the key factor for tailoring the physicochemical material properties. In this contribution, H-C-HSQC NMR spectra are used to gain detailed structural information on GMs and of 2-fold modified gelatin containing methacryloyl and acetyl groups (GMAs).
View Article and Find Full Text PDFThough bioprinting is a forward-looking approach in bone tissue engineering, the development of bioinks which are on the one hand processable with the chosen printing technique, and on the other hand possess the relevant mechanical as well as osteoconductive features remains a challenge. In the present study, polymer solutions based on methacrylated gelatin and methacrylated hyaluronic acid modified with hydroxyapatite (HAp) particles (5 wt%) were prepared. Encapsulation of primary human adipose-derived stem cells in the HAp-containing gels and culture for 28 d resulted in a storage moduli significantly increased to 126% ± 9.
View Article and Find Full Text PDFBio-based release systems for pro-angiogenic growth factors are of interest, to overcome insufficient vascularization and bio-integration of implants. In this study, we investigated heparin-functionalized hydrogels based on gelatin type A or albumin as storage and release systems for vascular endothelial growth factor (VEGF). The hydrogels were crosslinked using carbodiimide chemistry in presence of heparin.
View Article and Find Full Text PDFBlood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm.
View Article and Find Full Text PDFIn vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations.
View Article and Find Full Text PDFEur J Cardiothorac Surg
November 2014
Free-form fabrication techniques, often referred to as '3D printing', are currently tested with regard to the processing of biological and biocompatible materials in general and for fabrication of vessel-like structures in particular. Such computer-controlled methods assemble 3D objects by layer-wise deposition or layer-wise cross-linking of materials. They use, for example, nozzle-based deposition of hydrogels and cells, drop-on-demand inkjet-printing of cell suspensions with subsequent cross-linking, layer-by-layer cross-linking of synthetic or biological polymers by selective irradiation with light and even laser-induced deposition of single cells.
View Article and Find Full Text PDFDouble chemical functionalization of gelatin by methacrylation and acetylation of free amino groups enables control over both the viscous behavior of its solutions and the mechanical properties of the resulting hydrogels after photochemical crosslinking. The degree of methacrylation is controlled by the molar excess of methacrylic anhydride applied. Tenfold molar excess leads to highly methacrylated gelatin (GM), resulting in solutions with low viscosities within the inkjet-printable range (10 wt%: 3.
View Article and Find Full Text PDFControlled basic hydrolysis of poly(methyl methacrylate-co-ethylene glycol dimethacrylate) P(MMA-co-EGDMA) microparticles with a diameter d50=6 μm led to high densities of carboxylic groups at the particles' surface of up to 1.288 μeq g(-1) (equivalent to 1.277 μmol m(-2)).
View Article and Find Full Text PDFGelatin is a very promising matrix material for in vitro cell culture and tissue engineering, e.g. due to its native RGD content.
View Article and Find Full Text PDFTwo-photon polymerization (TPP) offers the possibility of creating artificial cell scaffolds composed of micro- and nanostructures with spatial resolutions of less than 1 µm. For use in tissue engineering, the identification of a TPP-processable polymer that provides biocompatibility, biofunctionality and appropriate mechanical properties is a difficult task. ECM proteins such as collagen or fibronectin, which could mimic native tissues best, often lack the mechanical stability.
View Article and Find Full Text PDFNanostructured core-shell particles with tailor-made affinity surfaces were used to generate microstructured affinity surfaces by microspotting the particles to form densely packed amorphous nanoparticle layers. These layers provided a large reactive surface for the specific binding of protein ligands from aqueous solution. Biofunctional core-shell particles were synthesized for this purpose that consisted of a silica core with a diameter of 100 nm and an organic shell a few nm thick.
View Article and Find Full Text PDF