Publications by authors named "Kirsten Benjamin"

Amyris is a fermentation product company that leverages synthetic biology and has been bringing novel fermentation products to the market since 2009. Driven by breakthroughs in genome editing, strain construction and testing, analytics, automation, data science, and process development, Amyris has commercialized nine separate fermentation products over the last decade. This has been accomplished by partnering with the teams at 17 different manufacturing sites around the world.

View Article and Find Full Text PDF

The thermotolerant yeast (formerly ) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate.

View Article and Find Full Text PDF

Efficient production of fuels and chemicals by metabolically engineered micro-organisms requires availability of precursor molecules for product pathways. In eukaryotic cell factories, heterologous product pathways are usually expressed in the cytosol, which may limit availability of precursors that are generated in other cellular compartments. In Saccharomyces cerevisiae, synthesis of the precursor molecule succinyl-Coenzyme A is confined to the mitochondrial matrix.

View Article and Find Full Text PDF

Future manufacturing will focus on new, improved products as well as on new and enhanced production methods. Recent biotechnological and scientific advances, such as CRISPR/Cas and various omic technologies, pave the way to exciting novel biotechnological research, development, and commercialization of new sustainable products. Rigorous mathematical descriptions of microbial cells and consortia thereof will enable deeper biological understanding and lead to powerful in silico cellular models.

View Article and Find Full Text PDF

A bio-based economy has the potential to provide sustainable substitutes for petroleum-based products and new chemical building blocks for advanced materials. We previously engineered Saccharomyces cerevisiae for industrial production of the isoprenoid artemisinic acid for use in antimalarial treatments. Adapting these strains for biosynthesis of other isoprenoids such as β-farnesene (CH), a plant sesquiterpene with versatile industrial applications, is straightforward.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher.

View Article and Find Full Text PDF

The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate.

View Article and Find Full Text PDF

A conditional gene expression system that is fast-acting, is tunable and achieves single-gene specificity was recently developed for yeast. A gene placed directly downstream of a modified GAL1 promoter containing six Zif268 binding sequences (with single nucleotide spacing) was shown to be selectively inducible in the presence of β-estradiol, so long as cells express the artificial transcription factor, Z3EV (a fusion of the Zif268 DNA binding domain, the ligand binding domain of the human estrogen receptor and viral protein 16). We show the strength of Z3EV-responsive promoters can be modified using straightforward design principles.

View Article and Find Full Text PDF

Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis.

View Article and Find Full Text PDF

Malaria, caused by Plasmodium sp, results in almost one million deaths and over 200 million new infections annually. The World Health Organization has recommended that artemisinin-based combination therapies be used for treatment of malaria. Artemisinin is a sesquiterpene lactone isolated from the plant Artemisia annua.

View Article and Find Full Text PDF

Although the proteins comprising many signaling systems are known, less is known about their numbers per cell. Existing measurements often vary by more than 10-fold. Here, we devised improved quantification methods to measure protein abundances in the Saccharomyces cerevisiae pheromone response pathway, an archetypical signaling system.

View Article and Find Full Text PDF

Here we present a set of resources (bacterial expression plasmids and antibodies) for the interrogation of proteins involved in yeast MAPK signalling. We constructed bacterial protein expression plasmids for 25 proteins involved in MAPK signalling in budding yeast. From these constructs we expressed and purified proteins and generated rabbit polyclonal antibodies against 13 proteins in the pheromone MAPK pathway.

View Article and Find Full Text PDF

Haploid Saccharomyces cerevisiae yeast cells use a prototypic cell signalling system to transmit information about the extracellular concentration of mating pheromone secreted by potential mating partners. The ability of cells to respond distinguishably to different pheromone concentrations depends on how much information about pheromone concentration the system can transmit. Here we show that the mitogen-activated protein kinase Fus3 mediates fast-acting negative feedback that adjusts the dose response of the downstream system response to match the dose response of receptor-ligand binding.

View Article and Find Full Text PDF

Microscope-based cytometry provides a powerful means to study cells in high throughput. Here we present a set of refined methods for making sensitive measurements of large numbers of individual Saccharomyces cerevisiae cells over time. The set consists of relatively simple 'wet' methods, microscope procedures, open-source software tools and statistical routines.

View Article and Find Full Text PDF

Objective: Recent studies have shown significant cognitive problems some months after critical illness. However there has been no research examining cognitive function within the intensive care unit (ICU) in non-delirious patients.

Design And Setting: A prospective study in an ICU.

View Article and Find Full Text PDF

CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis.

View Article and Find Full Text PDF

A key transition in meiosis is the exit from prophase and entry into the nuclear divisions, which in the yeast Saccharomyces cerevisiae depends upon induction of the middle sporulation genes. Ndt80 is the primary transcriptional activator of the middle sporulation genes and binds to a DNA sequence element termed the middle sporulation element (MSE). Sum1 is a transcriptional repressor that binds to MSEs and represses middle sporulation genes during mitosis and early sporulation.

View Article and Find Full Text PDF

Meiosis is thought to require the protein kinase Ime2 early for DNA replication and the cyclin-dependent kinase Cdc28 late for chromosome segregation. To elucidate the roles of these kinases, we inhibited their activities early and late using conditional mutants that are sensitive to chemical inhibitors. Our studies reveal that both Cdc28 and Ime2 have critical roles in meiotic S phase and M phase.

View Article and Find Full Text PDF

During meiosis, two rounds of chromosome segregation occur after a single round of DNA replication, producing haploid progeny from diploid progenitors. Three innovations in chromosome behaviour during meiosis I accomplish this unique division. First, crossovers between maternal and paternal sister chromatids (detected cytologically as chiasmata) bind replicated maternal and paternal chromosomes together.

View Article and Find Full Text PDF

The process by which the Saccharomyces cerevisiae strand transfer protein, Rad51, seeks out homologous sequences in vivo can be modeled by an in vitro reaction between a single-stranded DNA circle and a double-stranded linear DNA. In addition to the substrates and products, electrophoresis of reaction mixtures resolves two groups of low mobility bands. Here we show that the low mobility bands formed during strand transfer by Rad51 (or Escherichia coli RecA) represent joint molecules (JM) between the two substrates.

View Article and Find Full Text PDF