Purpose: Glycogen storage disease type III (GSD III) is a rare inherited metabolic disease characterized by excessive accumulation of glycogen in liver, skeletal muscle, and heart. Currently, there are no widely available noninvasive methods to assess tissue glycogen levels and disease load. Here, we use glycogen nuclear Overhauser effect (glycoNOE) MRI to quantify hepatic glycogen levels in a mouse model of GSD III.
View Article and Find Full Text PDFInvasive Staphylococcus aureus (S. aureus) infections are a leading cause of death and not effectively treated with prolonged standard of care antibiotics. A novel THIOMAB™ antibody antibiotic conjugate (TAC) was developed that uses a bacterial-wall specific antibody to deliver the antibiotic (dmDNA31, a rifamycin analogue) to bacteria to minimize toxicities typically seen with prolonged use of traditional antibiotics.
View Article and Find Full Text PDFBackground And Purpose: Polatuzumab vedotin is an antibody-drug conjugate (ADC) being developed for non-Hodgkin's lymphoma. It contains a humanized anti-CD79b IgG1 monoclonal antibody linked to monomethyl auristatin E (MMAE), an anti-mitotic agent. Polatuzumab vedotin binds to human CD79b only.
View Article and Find Full Text PDFPurpose: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy.
View Article and Find Full Text PDFA novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC.
View Article and Find Full Text PDFTrastuzumab emtansine (T-DM1) is the first antibody-drug conjugate (ADC) approved for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. The therapeutic premise of ADCs is based on the hypothesis that targeted delivery of potent cytotoxic drugs to tumors will provide better tolerability and efficacy compared with non-targeted delivery, where poor tolerability can limit efficacious doses. Here, we present results from preclinical studies characterizing the toxicity profile of T-DM1, including limited assessment of unconjugated DM1.
View Article and Find Full Text PDFBackground: Antibody-drug conjugates (ADCs) such as Kadcyla™ (ado-trastuzumab emtansine [T-DM1]) present covalently bound cytotoxic drugs, which may influence their immunogenicity potential compared with antibody therapies. Therefore, ADCs require assay strategies that allow measurement of responses to all the molecular components.
Results: The immunogenicity strategy for T-DM1 used a risk-based, tiered approach that included screening and titration to detect antitherapeutic antibodies; confirmation of positive responses; and characterization to assess whether the immune response is primarily to the antibody or to the linker-drug and/or new epitopes in trastuzumab resulting from conjugation.
Antibody-drug conjugates (ADC), potent cytotoxic drugs linked to antibodies via chemical linkers, allow specific targeting of drugs to neoplastic cells. We have used this technology to develop the ADC DCDT2980S that targets CD22, an antigen with expression limited to B cells and the vast majority of non-Hodgkin lymphomas (NHL). DCDT2980S consists of a humanized anti-CD22 monoclonal IgG1 antibody with a potent microtubule-disrupting agent, monomethyl auristatin E (MMAE), linked to the reduced cysteines of the antibody via a protease cleavable linker, maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl (MC-vc-PAB).
View Article and Find Full Text PDFSeveral toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin.
View Article and Find Full Text PDF