Arterioscler Thromb Vasc Biol
October 2013
Objective: Integrins contribute to vascular morphogenesis through regulation of adhesion and assembly of the extracellular matrix. However, the role of β1-integrin in the mature vascular wall is less clear.
Approach And Results: We sought to determine the function of β1-integrin in mature smooth muscle cells in vivo using a loss of function approach by crossing a tamoxifen-inducible sm22αCre line to a floxed β1-integrin transgenic line.
Lipoprotein lipase (LPL) is secreted into the interstitial spaces by adipocytes and myocytes but then must be transported to the capillary lumen by GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells. The mechanism by which GPIHBP1 and LPL move across endothelial cells remains unclear. We asked whether the transport of GPIHBP1 and LPL across endothelial cells was uni- or bidirectional.
View Article and Find Full Text PDFβ1 integrin has been shown to contribute to vascular smooth muscle cell differentiation, adhesion and mechanosensation in vitro. Here we showed that deletion of β1 integrin at the onset of smooth muscle differentiation resulted in interrupted aortic arch, aneurysms and failure to assemble extracellular matrix proteins. These defects result in lethality prior to birth.
View Article and Find Full Text PDFCre/loxP recombination enables cellular specificity and, in the case of inducible systems, temporal control of genomic deletions. Here we used a SM22α tamoxifen-inducible Cre line to inactivate β1 integrin in adult smooth muscle. Interestingly, analysis of two distinct β1 loxP transgenic mice revealed vastly different outcomes after β1 integrin deletion.
View Article and Find Full Text PDFThe vitelline artery is a temporary structure that undergoes extensive remodeling during midgestation to eventually become the superior mesenteric artery (also called the cranial mesenteric artery, in the mouse). Here we show that, during this remodeling process, large clusters of hematopoietic progenitors emerge via extravascular budding and form structures that resemble previously described mesenteric blood islands. We demonstrate through fate mapping of vascular endothelium that these mesenteric blood islands are derived from the endothelium of the vitelline artery.
View Article and Find Full Text PDFMaintenance of single-layered endothelium, squamous endothelial cell shape, and formation of a patent vascular lumen all require defined endothelial cell polarity. Loss of beta1 integrin (Itgb1) in nascent endothelium leads to disruption of arterial endothelial cell polarity and lumen formation. The loss of polarity is manifested as cuboidal-shaped endothelial cells with dysregulated levels and mislocalization of normally polarized cell-cell adhesion molecules, as well as decreased expression of the polarity gene Par3 (pard3).
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) originate within the aortic-gonado-mesonephros (AGM) region of the midgestation embryo, but the cell type responsible for their emergence is unknown since critical hematopoietic factors are expressed in both the AGM endothelium and its underlying mesenchyme. Here we employ a temporally restricted genetic tracing strategy to selectively label the endothelium, and separately its underlying mesenchyme, during AGM development. Lineage tracing endothelium, via an inducible VE-cadherin Cre line, reveals that the endothelium is capable of HSC emergence.
View Article and Find Full Text PDF