Publications by authors named "Kirpal Kohli"

Cardiac radiosurgery is a non-invasive treatment modality for ventricular tachycardia, where a linear accelerator is used to irradiate the arrhythmogenic region within the heart. In this work, cardiac magnetic resonance (CMR) cine images were used to quantify left ventricle (LV) segment-specific motion during the cardiac cycle and to assess potential advantages of cardiac-gated radiosurgery.CMR breath-hold cine images and LV contour points were analyzed for 50 controls and 50 heart failure patients with reduced ejection fraction (HFrEF, EF < 40%).

View Article and Find Full Text PDF

Purpose: Medical linear accelerators are the most costly standard equipment used in radiation oncology, however the service costs for these machines are not well understood. With an increasing demand for linear accelerators due to a global increase in cancer incidence, it is important to understand the expected maintenance costs of a larger global installed base so that these costs can be incorporated into budgeting. The purpose of this investigation is to analyze the costs for medical linear accelerator service and maintenance at our institution, in order to estimate the service cost ratio.

View Article and Find Full Text PDF

. While the accuracy of dose calculations in water with Acuros XB is well established, experimental validation of dose in bone is limited. Acuros XB reports both dose-to-medium and dose-to-water, and these values differ in bone, but there are no reports of measurements of validation in bone.

View Article and Find Full Text PDF

Purpose: To assess dosimetric properties and identify required updates to commonly used protocols (including use of film and ionization chamber) pertaining to a clinical linac configured into FLASH (ultra-high dose rate) electron mode.

Methods: An 18MV photon beam of a Varian iX linac was converted to FLASH electron beam by replacing the target and the flattening filter with an electron scattering foil. The dose was prescribed by entering the MUs through the console.

View Article and Find Full Text PDF

Purpose: Ventricular tachycardia (VT) is a rapid, abnormal heart rhythm that can lead to sudden cardiac death. Current treatment options include antiarrhythmic drug therapy and catheter ablation, both of which have only modest efficacy and have potential complications. Cardiac radiosurgery has the potential to be a noninvasive and efficient treatment option for VT.

View Article and Find Full Text PDF

An electrical Impedance based tool is designed and developed to aid physicians performing clinical exams focusing on cancer detection. Current research envisions improvement in sensor-based measurement technology to differentiate malignant and benign lesions in human subjects. The tool differentiates malignant anomalies from nonmalignant anomalies using Electrical Impedance Spectroscopy (EIS).

View Article and Find Full Text PDF

Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs.

View Article and Find Full Text PDF

Background: In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy.

View Article and Find Full Text PDF

Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets.

View Article and Find Full Text PDF

Partial transmission through rounded leaf ends of Varian multileaf collimators (MLC) is accounted for with a parameter called the dosimetric leaf gap (DLG). Verification of the value of the DLG is needed when the dose delivery is accompanied by gantry rotation in VMAT plans. We compared the doses measured with GAFCHROMIC film and an ionization chamber to treatment planning system (TPS) calculations to identify the optimum values of the DLG in clinical plans of the whole brain with metastases transferred to a phantom.

View Article and Find Full Text PDF

High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.

View Article and Find Full Text PDF