Publications by authors named "Kirov I"

Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited.

View Article and Find Full Text PDF

Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results.

View Article and Find Full Text PDF

Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes.

View Article and Find Full Text PDF

Purpose: The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression.

View Article and Find Full Text PDF

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species.

View Article and Find Full Text PDF

Genetic diversity is a key factor for plant breeding. The birth of novel genic and genomic variants is also crucial for plant adaptation in nature. Therefore, the genomes of almost all living organisms possess natural mutagenic mechanisms.

View Article and Find Full Text PDF

Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads.

View Article and Find Full Text PDF

Extrachromosomal circular DNAs (eccDNAs) are enigmatic DNA molecules that have been detected in a range of organisms. In plants, eccDNAs have various genomic origins and may be derived from transposable elements. The structures of individual eccDNA molecules and their dynamics in response to stress are poorly understood.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopy (H MRS) offers biomarkers of metabolic damage after mild traumatic brain injury (mTBI), but a lack of replicability studies hampers clinical translation. In a conceptual replication study design, the results reported in four previous publications were used as the hypotheses (H1-H7), specifically: abnormalities in patients are diffuse (H1), confined to white matter (WM) (H2), comprise low N-acetyl-aspartate (NAA) levels and normal choline (Cho), creatine (Cr) and myo-inositol (mI) (H3), and correlate with clinical outcome (H4); additionally, a lack of findings in regional subcortical WM (H5) and deep gray matter (GM) structures (H6), except for higher mI in patients' putamen (H7).

Methods: 26 mTBI patients (20 female, age 36.

View Article and Find Full Text PDF

Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings.

View Article and Find Full Text PDF

Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method ('TEgenesis') along with long-read cDNA Nanopore sequencing. This approach allows for the identification of 56 RTE transcripts from different genomic loci including full-length and non-autonomous RTEs.

View Article and Find Full Text PDF

The ability to directly look into genome sequences has opened great opportunities in plant breeding. Yet, the assembly of full-length chromosomes remains one of the most difficult problems in modern genomics. Genetic maps are commonly used in de novo genome assembly and are constructed on the basis of a statistical analysis of the number of recombinations.

View Article and Find Full Text PDF

High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level.

View Article and Find Full Text PDF

Sequencing and epigenetic profiling of target genes in plants are important tasks with various applications ranging from marker design for plant breeding to the study of gene expression regulation. This is particularly interesting for plants with big genome size for which whole-genome sequencing can be time-consuming and costly. In this study, we asked whether recently proposed Cas9-targeted nanopore sequencing (nCATS) is efficient for target gene sequencing for plant species with big genome size.

View Article and Find Full Text PDF

Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions.

View Article and Find Full Text PDF

Objectives: To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI.

Methods: Clinical imaging, MRF, and DTI were acquired in patients (24 ± 10 days after injury (timepoint 1) and 90 ± 17 days after injury (timepoint 2)) and once in controls. Patient outcome was assessed with global functioning, symptom profile, and neuropsychological testing.

View Article and Find Full Text PDF

In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly.

View Article and Find Full Text PDF

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE.

View Article and Find Full Text PDF

The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations: (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function.

View Article and Find Full Text PDF

Common buckwheat () is an important non-cereal grain crop and a prospective component of functional food. Despite this, the genomic resources for this species and for the whole family Polygonaceae, to which it belongs, are scarce. Here, we report the assembly of the buckwheat genome using long-read technology and a high-resolution expression atlas including 46 organs and developmental stages.

View Article and Find Full Text PDF

In stone fruit trees, resistance to (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems.

View Article and Find Full Text PDF

The intergenic space of plant genomes encodes many functionally important yet unexplored RNAs. The genomic loci encoding these RNAs are often considered "junk", DNA as they are frequently associated with repeat-rich regions of the genome. The latter makes the annotations of these loci and the assembly of the corresponding transcripts using short RNAseq reads particularly challenging.

View Article and Find Full Text PDF

LTR retrotransposons (RTEs) play a crucial role in plant genome evolution and adaptation. Although RTEs are generally silenced in somatic plant tissues under non-stressed conditions, some expressed RTEs (exRTEs) escape genome defense mechanisms. As our understanding of exRTE organization in plants is rudimentary, we systematically surveyed the genomic and transcriptomic organization and mobilome (transposition) activity of sunflower ( L.

View Article and Find Full Text PDF

We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.

View Article and Find Full Text PDF