Publications by authors named "Kiros Haddish"

Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes.

View Article and Find Full Text PDF
Article Synopsis
  • Echinacoside (ECH) is a natural compound studied for its effects on fat metabolism and interaction with dopamine receptors in fat cells and mice.
  • ECH significantly promoted fat cell "browning" in lab tests while reducing fat formation in living subjects, evidenced by increased expression of genes responsible for energy expenditure and thermogenesis.
  • In animal models, ECH treatment resulted in a notable 12.28% decrease in body weight gain, highlighting its potential for obesity and metabolic syndrome management.
View Article and Find Full Text PDF

Background: As a part of the catecholamines, dopamine receptors (DRs) have not been extensively studied like β3-AR in the thermogenesis process. The present study investigates the effect of DRD5 in browning events and ATP-consuming futile cycles.

Methods: siRNA technology, qPCR, immunoblot analysis, immunofluorescence, and staining methods were used to investigate the effect of DRD5 on 3T3-L1 and C2C12 cells.

View Article and Find Full Text PDF

The activation of beige fat and muscle tissues is an interesting and encouraging target for therapeutic intervention in obesity owing to their remarkable lipolytic activity and energy-consuming futile cycles. This study examined the effect of dopamine receptor D4 (DRD4) on lipid metabolisms as well as UCP1- and ATP-dependent thermogenesis in Drd4-silenced 3T3-L1 adipocytes and C2C12 muscle cells. Silencing of Drd4, followed by quantitative real-time PCR, immunoblot analysis, immunofluorescence, and staining methods, were applied to evaluate the effects of DRD4 on diverse target genes and proteins of both cells.

View Article and Find Full Text PDF

The browning of white adipose tissue (WAT) has attracted considerable attention in the scientific community as a popular strategy for enhancing energy expenditure to combat obesity. As a part of this strategy, β3-adrenergic receptor (β3-AR) is the most widely studied receptor that mediates thermogenesis. Parenthetically, further studies in search for additional receptors expressed in adipocytes that can mediate thermogenesis has been appearing, and this paper reports that dopaminergic receptor 1 (DRD1) and β3-AR synergistically stimulate browning in 3T3-L1 white adipocytes.

View Article and Find Full Text PDF