Publications by authors named "Kirk Welker"

Extremely severe nausea was experienced by four subjects positioned prone on a 7T scanner table with their arm extended overhead for a wrist examination and their head positioned approximately 10-20 cm above the magnet's central axis. Movement through the large static and spatial field gradients of current 7T MRI scanner magnets typically causes mild vestibular activation which is well tolerated by most individuals. However, when positioned off-axis, the head moves through regions of even larger and more rapidly changing magnetic fields which in the current study were sufficient to induce the extremely severe nausea.

View Article and Find Full Text PDF
Article Synopsis
  • Since 2006, neuroradiologists have restricted the use of gadolinium-based contrast agents (GBCAs) in patients with chronic kidney disease (CKD) to prevent nephrogenic systemic fibrosis (NSF), significantly reducing its occurrence.
  • In 2023-2024, the American Society of Neuroradiology reviewed recent research on GBCA safety to update guidelines for MRI contrast use in CKD patients.
  • The ASNR now recommends that Group II GBCAs can be safely used in CKD patients when necessary for diagnosis, and additional safety measures like checking renal function may be relaxed.
View Article and Find Full Text PDF

Background And Purpose: Artificial intelligence models in radiology are frequently developed and validated using data sets from a single institution and are rarely tested on independent, external data sets, raising questions about their generalizability and applicability in clinical practice. The American Society of Functional Neuroradiology (ASFNR) organized a multicenter artificial intelligence competition to evaluate the proficiency of developed models in identifying various pathologies on NCCT, assessing age-based normality and estimating medical urgency.

Materials And Methods: In total, 1201 anonymized, full-head NCCT clinical scans from 5 institutions were pooled to form the data set.

View Article and Find Full Text PDF

Background: Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential.

View Article and Find Full Text PDF

Background And Purpose: Cushing disease is typically caused by a pituitary adenoma that frequently is small and challenging to detect on conventional MR imaging. High-field-strength 7T MR imaging can leverage increased SNR and contrast-to-noise ratios compared with lower-field-strength MR imaging to help identify small pituitary lesions. We aimed to describe our institutional experience with 7T MR imaging in patients with Cushing disease and perform a review of the literature.

View Article and Find Full Text PDF

Objective: We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment.

Design: Systematic review, Meta-Analysis.

Setting: We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks.

View Article and Find Full Text PDF

Purpose: Dental amalgam contains mercury and is commonly used in dental restorations. The impact of MRI on mercury excretion from dental amalgam is not well understood across clinical field strengths, especially 7T. We investigated the effects of MRI exposure on mercury excretion using fresh, lab-created dental amalgam restorations and in extracted teeth with old, pre-existing restorations.

View Article and Find Full Text PDF

In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies.

View Article and Find Full Text PDF

Background: 7T MRI offers significant benefits to spatial and contrast resolution compared to lower field strengths. This superior image quality can help better delineate targets in stereotactic neurosurgical procedures; however, the potential for increased geometric distortions at 7T has impaired its widespread use for these applications. Image geometric distortions can be due to distortions of B arising from tissue magnetic susceptibility effects or inherent field inhomogeneities, and nonlinearity of the magnetic field gradients.

View Article and Find Full Text PDF

Objective: This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps.

Methods: Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing.

View Article and Find Full Text PDF

Objective: Magnetic resonance imaging at 7T offers improved image spatial and contrast resolution for visualization of small brain nuclei targeted in neuromodulation. However, greater image geometric distortion and a lack of compatible instrumentation preclude implementation. In this report, the authors detail the development of a stereotactic image localizer and accompanying imaging sequences designed to mitigate geometric distortion, enabling accurate image registration and surgical planning of basal ganglia nuclei.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a complex and incompletely-understood cerebrovascular pathological entity that requires thorough clinical and imaging evaluation. Moyamoya is rare, thereby making the establishment of an effective, thorough and interdisciplinary patient evaluation protocol challenging, even within specialized referral centers. Nevertheless, implementation of such a protocol is crucial in order to provide the best possible evaluation and treatment for MMD patients.

View Article and Find Full Text PDF

Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed.

View Article and Find Full Text PDF

The arrival of 7T MR imaging into the clinic represents a significant step-change in MR technology. This article describes safety concerns associated with imaging at 7T, including the increased magnetic forces on magnetic objects at 7T and the interaction of the 300 MHz (Larmor) radiofrequency energy with tissue in the body. A dedicated multidisciplinary 7T Safety team should develop safety policies and procedures to address these safety challenges and keep abreast of best practice in the field.

View Article and Find Full Text PDF

Purpose: We investigated the hypothesis that increasing fMRI temporal resolution using a multiband (MB) gradient echo-echo planar imaging (GRE-EPI) pulse sequence provides fMRI language maps of higher statistical quality than those acquired with a traditional GRE-EPI sequence.

Methods: This prospective study enrolled 29 consecutive patients receiving language fMRI prior to a potential brain resection for tumor, AVM, or epilepsy. A 4-min rhyming task was performed at 3.

View Article and Find Full Text PDF

Recognition of key concepts of structural and functional anatomy of the cerebellum can facilitate image interpretation and clinical correlation. Recently, the human brain mapping literature has increased our understanding of cerebellar anatomy, function, connectivity with the cerebrum, and significance of lesions involving specific areas.Both the common names and numerically based Schmahmann classifications of cerebellar lobules are illustrated.

View Article and Find Full Text PDF

Objectives: The aim of this work was to devise mitigation strategies for addressing a range of image artifacts on a clinical 7 T magnetic resonance imaging scanner using the regulatory-approved single-channel radiofrequency transmit mode and vendor-supplied radiofrequency coils to facilitate clinical scanning within reasonable scan times.

Materials And Methods: Optimized imaging sequence protocols were developed for routine musculoskeletal knee and neurological imaging. Sources of severe image nonuniformities were identified, and mitigation strategies were devised.

View Article and Find Full Text PDF

Objective: To rigorously compare automated atlas-based and manual tracing hippocampal segmentation for accuracy, repeatability, and clinical acceptability given a relevant range of imaging abnormalities in clinical epilepsy.

Methods: Forty-nine patients with hippocampal asymmetry were identified from our institutional radiology database, including two patients with significant anatomic deformations. Manual hippocampal tracing was performed by experienced technologists on 3T MPRAGE images, measuring hippocampal volume up to the tectal plate, excluding the hippocampal tail.

View Article and Find Full Text PDF

We compared resting-state functional connectivity (RSFC) among limbic and temporal lobe regions between patients with medial temporal lobe epilepsy (mTLE) and healthy control subjects to identify imaging evidence of functional networks related to seizure frequency, age of seizure onset, and duration of epilepsy. Twelve patients with drug-resistant, unilateral medial temporal lobe epilepsy and 12 healthy control subjects matched for age, sex, and handedness participated in the imaging experiments. We used network-based statistics to compare functional connectivity graphs in patients with mTLE and healthy controls to investigate the relationship between functional connectivity abnormalities and seizure frequency.

View Article and Find Full Text PDF

Background And Objectives: We assessed correlations between the resting state functional connectivity (RSFC) of different thalamic nuclei and seizure frequency in patients with drug-resistant medial temporal lobe epilepsy (mTLE).

Methods: Seventeen patients with mTLE and 17 sex-/age-/handedness-matched controls participated. A seed-based correlation method for the resting-state FMRI data was implemented to get RSFC maps of 70 thalamic nuclei seed masks.

View Article and Find Full Text PDF

Background And Objectives: Deep brain stimulation (DBS) of the thalamus is a promising therapeutic alternative for treating medically refractory Tourette syndrome (TS). However, few human studies have examined its mechanism of action. Therefore, the networks that mediate the therapeutic effects of thalamic DBS remain poorly understood.

View Article and Find Full Text PDF

Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. Standard MR techniques used in adult neuroimaging are suboptimal for imaging in pediatrics because there are significant differences in the child's developing brain. These differences include size, myelination and sulcation.

View Article and Find Full Text PDF