Publications by authors named "Kirk K Durston"

DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches.

View Article and Find Full Text PDF

Motivation: AlphaFold has been a major advance in predicting protein structure, but still leaves the problem of determining which sub-molecular components of a protein are essential for it to carry out its function within the cell. Direct coupling analysis predicts two- and three-amino acid contacts, but there may be essential interdependencies that are not proximal within the 3D structure. The problem to be addressed is to design a computational method that locates and ranks essential non-proximal interdependencies within a protein involving five or more amino acids, using large, multiple sequence alignments (MSAs) for both globular and intrinsically unstructured proteins.

View Article and Find Full Text PDF

Background: Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family.

View Article and Find Full Text PDF

Background: Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity.

Methods And Results: We have extended Shannon uncertainty by incorporating the data variable with a functionality variable.

View Article and Find Full Text PDF