Publications by authors named "Kirk Barnett"

Background: Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap.

View Article and Find Full Text PDF

Predicted increases in extreme weather are likely to alter the interactions between organisms within ecosystems. Whilst many studies have investigated the impacts of climate change on aboveground plant-insect interactions, those belowground remain relatively unexplored. Root herbivores can be the dominant taxa in grasslands, potentially altering plant community dynamics.

View Article and Find Full Text PDF

Fifty years ago, Ehrlich and Raven proposed that insect herbivores have driven much of plant speciation, particularly at tropical latitudes. There have been no explicit tests of their hypotheses. Indeed there were no proposed mechanisms either at the time or since by which herbivores might generate new plant species.

View Article and Find Full Text PDF

Climate change is predicted to result in altered precipitation patterns, which may reshape many grassland ecosystems. Rainfall is expected to change in a number of different ways, ranging from periods of prolonged drought to extreme precipitation events, yet there are few community wide studies to accurately simulate future changes. We aimed to test how above- and below-ground grassland invertebrate populations were affected by contrasting future rainfall scenarios.

View Article and Find Full Text PDF

Climate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform - DRI-Grass (rought and oot Herbivore nteractions in a land) - that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12-14 weeks without water, December-March)], and contrasting levels of root herbivory.

View Article and Find Full Text PDF

Invertebrates are the main components of faunal diversity in grasslands, playing substantial roles in ecosystem processes including nutrient cycling and pollination. Grassland invertebrate communities are heavily dependent on the plant diversity and production within a given system. Climate change models predict alterations in precipitation patterns, both in terms of the amount of total inputs and the frequency, seasonality and intensity with which these inputs occur, which will impact grassland productivity.

View Article and Find Full Text PDF

Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum), for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry.

View Article and Find Full Text PDF

The productivity of semiarid Australian grassland ecosystems is currently limited by water availability and may be impacted further by predicted changes in rainfall regimes associated with climate change. In this study, we established a rainfall manipulation experiment to determine the effects of reduced frequency (RF; 8 days between water events) and reduced magnitude (RM; 50% reduction in amount) of rainfall events on the physiology and above- and below-ground growth of five grassland plant species with differing traits. Native C4 grasses exhibited the highest productivity in well watered, control (Cont) conditions, as well as in RF and RM treatments.

View Article and Find Full Text PDF

Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e.

View Article and Find Full Text PDF

Despite the ubiquity of invasive organisms and their often deleterious effects on native flora and fauna, the consequences of biological invasions for human health and the ecological mechanisms through which they occur are rarely considered. Here we demonstrate that a widespread invasive shrub in North America, Amur honeysuckle (Lonicera maackii), increases human risk of exposure to ehrlichiosis, an emerging infectious disease caused by bacterial pathogens transmitted by the lone star tick (Amblyomma americanum). Using large-scale observational surveys in natural areas across the St.

View Article and Find Full Text PDF