Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy.
View Article and Find Full Text PDFInvasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis.
View Article and Find Full Text PDFHost genetic factors can confer resistance against malaria, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples.
View Article and Find Full Text PDFThe -α -thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. In this study, we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal.
View Article and Find Full Text PDFBackground: Anti-malarial drug resistance remains a key concern for the global fight against malaria. In Ghana sulfadoxine-pyrimethamine (SP) is used for intermittent preventive treatment of malaria in pregnancy and combined with amodiaquine for Seasonal Malaria Chemoprevention (SMC) during the high malaria season. Thus, surveillance of molecular markers of SP resistance is important to guide decision-making for these interventions in Ghana.
View Article and Find Full Text PDFMalaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria, as an instrumental variable in Mendelian randomization analyses.
View Article and Find Full Text PDFThe two most efficient and most recently radiated Afrotropical vectors of human malaria - Anopheles coluzzii and An. gambiae - are identified by single-locus diagnostic PCR assays based on species-specific markers in a 4 Mb region on chromosome-X centromere. Inherently, these diagnostic assays cannot detect interspecific autosomal admixture shown to be extensive at the westernmost and easternmost extremes of the species range.
View Article and Find Full Text PDFGlycophorins are the most abundant sialoglycoproteins on the surface of human erythrocyte membranes. Genetic variation in glycophorin region of human chromosome 4 (containing , , and genes) is of interest because the gene products serve as receptors for pathogens of major public health interest, including , , Influenza virus, El Tor Hemolysin, and . A large structural rearrangement and hybrid glycophorin variant, known as , which was identified in East African populations, has been linked with a 40% reduction in risk for severe malaria.
View Article and Find Full Text PDF: Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-γ) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-γ gene ) are associated with increased IFN-γ production.
View Article and Find Full Text PDFThe spread of resistance to insecticides in disease-carrying mosquitoes poses a threat to the effectiveness of control programmes, which rely largely on insecticide-based interventions. Monitoring mosquito populations is essential, but obtaining phenotypic measurements of resistance is laborious and error-prone. High-throughput genotyping offers the prospect of quick and repeatable estimates of resistance, while also allowing resistance markers to be tracked and studied.
View Article and Find Full Text PDFBackground: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms-many related to the structure or function of red blood cells-and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress.
Methods: We did a case-control study in Kilifi County, Kenya.
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One () gene, named and , occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive.
View Article and Find Full Text PDFBackground: Human malaria susceptibility is determined by multiple genetic factors. It is unclear, however, which genetic variants remain important over time.
Methods: Genetic associations of 175 high-quality polymorphisms within several malaria candidate genes were examined in a sample of 8096 individuals from northeast Tanzania using altitude, seroconversion rates, and parasite rates as proxies of historical, recent, and current malaria transmission intensity.
The malaria parasite invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes and We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of and gain of two hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa.
View Article and Find Full Text PDFAs many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging.
View Article and Find Full Text PDFBackground: Severe anemia is a major cause of sickness and death in African children, yet the causes of anemia in this population have been inadequately studied.
Methods: We conducted a case-control study of 381 preschool children with severe anemia (hemoglobin concentration, <5.0 g per deciliter) and 757 preschool children without severe anemia in urban and rural settings in Malawi.
The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding.
View Article and Find Full Text PDFSimilarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions.
View Article and Find Full Text PDFBacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya.
View Article and Find Full Text PDFTumour necrosis factor (TNF) - α has been shown to play an important role in the pathogenesis of falciparum malaria. Two TNF promoter polymorphisms, TNF-308 and TNF-238 have been associated with differential activity and production of TNF. In order to investigate the association between TNF-308 and TNF-238 and the clinical outcome of malaria in a Nigerian population, the two TNF polymorphisms were analysed using Sequenom iPLEX Platform.
View Article and Find Full Text PDFGenome-wide searches for loci involved in human resistance to malaria are currently being conducted on a large scale in Africa using case-control studies. Here, we explore the utility of an alternative approach-"environmental correlation analysis, ECA," which tests for clines in allele frequencies across a gradient of an environmental selection pressure-to identify genes that have historically protected against death from malaria. We collected genotype data from 12,425 newborns on 57 candidate malaria resistance loci and 9,756 single nucleotide polymorphisms (SNPs) selected at random from across the genome, and examined their allele frequencies for geographic correlations with long-term malaria prevalence data based on 84,042 individuals living under different historical selection pressures from malaria in coastal Kenya.
View Article and Find Full Text PDFBackground: Glucose-6-phosphate dehydrogenase (G6PD) deficiency exhibits considerable allelic heterogeneity which manifests with variable biochemical and clinical penetrance. It has long been thought that G6PD deficiency confers partial protection against severe malaria, however prior genetic association studies have disagreed with regard to the strength and specificity of a protective effect, which might reflect differences in the host genetic background, environmental influences, or in the specific clinical phenotypes considered.
Methods: A case-control association study of severe malaria was conducted in The Gambia, a region in West Africa where there is considerable allelic heterogeneity underlying expression of G6PD deficiency trait, evaluating the three major nonsynonymous polymorphisms known to be associated with enzyme deficiency (A968G, T542A, and C202T) in a cohort of 3836 controls and 2379 severe malaria cases.
Background: The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya.
Methods: We did this study in Kilifi County, Kenya, where the G6PD c.