The finite-difference time-domain (FDTD) method is considered to be one of the most accurate and common methods for the simulation of optical devices. However, the conventional FDTD method is subject to the Courant-Friedrich-Levy condition, resulting in extremely low efficiency for calculating two-dimensional materials (2DMs). Recent researches on the hybrid implicit-explicit FDTD (HIE-FDTD) method show that the method can efficiently simulate homogeneous and isotropic 2DMs such as graphene sheet; however, it is inapplicable to the anisotropic medium.
View Article and Find Full Text PDF