Graphene-based materials play an essential role in a wide range of modern technologies due to their surface properties such as adsorption capacity and controllable wettability, which depend on the production methods. For practical applications, it is crucial to control the surface properties to achieve the desired wetting characteristics, which can be described with the contact angle (CA). Here, we experimentally investigate the wettability properties of the carbon nanowalls and show how to manage a wetting transition from superhydrophobic to superhydrophilic states.
View Article and Find Full Text PDFThe effects of electrochemical oxidation and surfactant adsorption on behavior of vertically oriented carbon-nanowall (CNW)-based electrodes are studied. Electrochemical oxidation is carried out by the electrode polarization in aqueous solutions at high anodic potentials corresponding to water electrolysis, whereas the modification of surface by surfactants is accomplished by the adsorption of molecules characterized by the cage-like structure. Using the methods of cyclic voltammetry and impedancemetry, it is shown that a substantial increase in the capacitance of CNW-based electrodes is observed in both cases (30-50-fold and 3-5-fold, respectively).
View Article and Find Full Text PDFOxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions.
View Article and Find Full Text PDFIn this paper we propose a new and simple method to tune the carbon nanowall microstructure by sharp variation of CH4/H2 plasma conditions. Using theoretical calculations we demonstrated that the sharp variation of gas pressure and discharge current leads to significant variation of plasma radical composition. In some cases such perturbation creates the necessary conditions for the nucleation of smaller secondary nanowalls on the surface of primary ones.
View Article and Find Full Text PDF