Publications by authors named "Kirill Sheberstov"

Dynamic nuclear polarization (DNP) enhances nuclear magnetic resonance (NMR) sensitivity by transferring polarization from unpaired electrons to nuclei, but nearby nuclear spins are difficult to detect or "hidden" due to strong electron-nuclear couplings that hypershift their NMR resonances. Here, we detect these hypershifted spins in a frozen glycerol-water mixture doped with TEMPOL at ~1.4 K using spin diffusion enhanced saturation transfer (SPIDEST), which indirectly reveals their spectrum.

View Article and Find Full Text PDF

It is shown that proton spins highly polarized by dynamic nuclear polarization (DNP) retain substantial polarization upon the rapid transfer of frozen bullets from a polarizer to an NMR spectrometer. After injection in solution, the resulting hyperpolarization in aliphatic chains comprises population imbalances between singlet and triplet states of geminal protons and combinations thereof. These hyperpolarized long-lived states (LLSs) can be reconverted into observable transverse magnetization by polychromatic spin-lock-induced crossing (poly-SLIC).

View Article and Find Full Text PDF

Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements.

View Article and Find Full Text PDF

Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, broken down into pieces, the process may turn out to be easier than expected. Quite the opposite, it is in fact a powerful and playful means to get insights into the spin dynamics of NMR experiments.

View Article and Find Full Text PDF

In nuclear magnetic resonance, long-lived coherences constitute a class of zero-quantum (ZQ) coherences that have lifetimes that can be longer than the relaxation lifetimes T2 of transverse magnetization. So far, such coherences have been observed in systems with two coupled spins with spin quantum numbers I = 1/2, where a term S0T0+T0S0 in the density operator corresponds to a coherent superposition between the singlet S0 and the central triplet T0 state. Here, we report on the excitation and detection of collective long-lived coherences in AA'MM'XX' spin systems in molecules containing a chain of at least three methylene (-CH2-) groups.

View Article and Find Full Text PDF

Long-lived states (LLSs) have lifetimes that can be much longer than longitudinal relaxation times . In molecules containing several geminal pairs of protons in neighboring CH groups, it has been shown that LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP).

View Article and Find Full Text PDF

Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T).

View Article and Find Full Text PDF

In nuclear magnetic resonance (NMR), the lifetimes of long-lived states (LLSs) are exquisitely sensitive to their environment. However, the number of molecules where such states can be excited has hitherto been rather limited. Here, it is shown that LLSs can be readily excited in many common molecules that contain two or more neighboring CH groups.

View Article and Find Full Text PDF

Long-lived states (LLS) involving pairs of magnetically inequivalent but chemically equivalent proton spins in aliphatic (CH_{2})_{n} chains can be excited by simultaneous application of weak selective radio frequency fields at n chemical shifts by polychromatic spin-lock induced crossing. The LLS are delocalized throughout the aliphatic chains by mixing of intrapair singlet states and by excitation of LLS comprising products of four and six spin operators. The measured lifetimes T_{LLS} in a model compound are about 5 times longer than T_{1} and are strongly affected by interactions with macromolecules.

View Article and Find Full Text PDF

Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that provides rich spectroscopic information in the absence of large magnetic fields. However, signal acquisition still requires a mechanism for generating a bulk magnetic moment for detection, and the currently used methods only apply to a limited pool of chemicals or come at prohibitively high cost. We demonstrate that the parahydrogen-based SABRE (signal amplification by reversible exchange)-Relay method can be used as a more general means of generating hyperpolarized analytes for ZULF NMR by observing zero-field -spectra of [C]-methanol, [1-C]-ethanol, and [2-C]-ethanol in both C-isotopically enriched and natural abundance samples.

View Article and Find Full Text PDF

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions.

View Article and Find Full Text PDF

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on N -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process.

View Article and Find Full Text PDF

The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium.

View Article and Find Full Text PDF

Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We achieve significant cooling of an ensemble of nuclear spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" Zeeman states. The effect is demonstrated by nuclear magnetic resonance experiments on a molecular system containing a coupled pair of near-equivalent C nuclei.

View Article and Find Full Text PDF

Long-Lived spin States (LLSs) hold a great promise for sustaining non-thermal spin order and investigating various slow processes by Nuclear Magnetic Resonance (NMR) spectroscopy. Of special interest for such application are molecules containing nearly equivalent magnetic nuclei, which possess LLSs even at high magnetic fields. In this work, we report an LLS in trans-N,N'-azobenzene.

View Article and Find Full Text PDF

Some nuclear spin systems support long-lived states, which display greatly extended relaxation times relative to the relaxation time of nuclear spin magnetization. In spin-1/2 pairs, such a long-lived state is given by singlet order, representing the difference of the population of the nuclear singlet state and the mean population of the three triplets. In many cases, the experiments with long-lived singlet order are very time-consuming because of the need to wait for singlet order decay before the experiment can be repeated; otherwise, spin order remaining from a previous measurement may lead to experimental artifacts.

View Article and Find Full Text PDF

The fundamental concept of phase discussed in this tutorial aimed at providing students with an explanation of the delays and processing parameters they may find in nuclear magnetic resonance (NMR) pulse programs. We consider the phase of radio-frequency pulses, receiver, and magnetization and how all these parameters are related to phases and offsets of signals in spectra. The impact of the off-resonance effect on the phase of the magnetization is discussed before presenting an overview of how adjustment of the time reference of the free induction decay avoids first-order correction of the phase of spectra.

View Article and Find Full Text PDF

The signal-to-noise ratio is an important property of NMR spectra. It allows to compare the sensitivity of experiments, the performance of hardware, etc. Its measurement is usually done in a rudimentary manner involving manual operation of selecting separately a region of the spectrum with signal and noise, respectively, applying some operation and returning the signal-to-noise ratio.

View Article and Find Full Text PDF

We present approaches for an efficient excitation of singlet-triplet coherences in pairs of nearly-equivalent spins. Standard Nuclear Magnetic Resonance (NMR) pulse sequences do not excite these coherences at all or with very low efficiency. The single quantum singlet-triplet coherences, here termed the outer singlet-triplet coherences, correspond to lines of low intensity in the NMR spectrum of a strongly-coupled spin pair (they are sometimes referred to as "forbidden transitions"), whereas the zero-quantum coherences, here termed the inner singlet-triplet coherences, do not have a direct spectral manifestation.

View Article and Find Full Text PDF

A method is implemented to perform "fast" adiabatic variation of the spin Hamiltonian by imposing the constant adiabaticity condition. The method is applied to improve the performance of singlet-state Nuclear Magnetic Resonance (NMR) experiments, specifically, for efficient generation and readout of the singlet spin order in coupled spin pairs by applying adiabatically ramped RF-fields. Test experiments have been performed on a specially designed molecule having two strongly coupled C spins and on selectively isotopically labelled glycerol having two pairs of coupled protons.

View Article and Find Full Text PDF

We provide a detailed evaluation of nuclear magnetic resonance (NMR) parameters of the - and -isomers of azobenzene (AB). For determining the NMR parameters, such as proton-proton and proton-nitrogen -couplings and chemical shifts, we compared NMR spectra of three different isotopomers of AB: the doubly N labeled azobenzene, N,N'-AB, and two partially deuterated AB isotopomers with a single N atom. For the total lineshape analysis of NMR spectra, we used the recently developed ANATOLIA software package.

View Article and Find Full Text PDF

The two most compelling methods for broadband homonuclear decoupling currently available, Zangger-Sterk (ZS) and pure shift yielded by chirp excitation (PSYCHE), were successfully adapted and tested on the C isotope. When applied during the indirect carbon evolution in the HSQC experiment, they both entirely eliminated the extended carbon-carbon multiplet structures observed in this dimension of a non-decoupled HSQC spectrum of C-enriched cholesterol. The optimized selective pulse modulated using novel non-equidistant scheme for multisite refocusing (ZS) and the small flip angle saltire chirps (PSYCHE) both proved to be robust and efficient in providing decoupled spectra with a sensitivity of about 25% that of the non-decoupled HSQC spectra with improved quality compared to earlier results.

View Article and Find Full Text PDF

An efficient approach for reference deconvolution of two-dimensional spectra aiming at the correction of static field inhomogeneity was established. In comparison to known techniques, a great improvement was achieved using the cross-section along the diagonal of the reference peak instead of its full 2D line shape. The method is termed pseudo-2D diagonal deconvolution.

View Article and Find Full Text PDF