The effective use of polymer carbon dots (PCD) in various fields of science and technology requires a more detailed understanding of the mechanisms of their photoluminescence formation and change as a result of their interaction with the environment. In this study, PCD synthesized via a hydrothermal method from citric acid and ethylenediamine are studied in various solvents using FTIR spectroscopy, optical absorption spectroscopy, and photoluminescence spectroscopy. As a result of the analysis of the obtained dependencies of such PCD spectral characteristics as the photoluminescence FWHM, the photoluminescence quantum yield, the photoluminescence lifetime on the acidity and basicity of the solvent, a hypothesis was formulated on the formation mechanism of hydrogen bonds between the PCD surface groups and the molecules of the environment, and conclusions were made about the donor-acceptor nature of the synthesized PCD.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
The possibility of chemical modification of a graphene oxide film deposited on a Si/SiO substrate during a one-stage hydrothermal process in the presence of fluorine ions and reducing agents, such as ascorbic acid or hydrazine, is shown. The proposed technique makes it possible to obtain reduced fluorinated graphene nitride oxide (RGOFN) in the form of a thin film with a controlled composition of functional groups by changing the type and concentration of the reducing agent and then transferring the obtained films to any substrate. XPS and IR spectroscopy of the obtained films revealed controlled changes in the structure and composition of graphene oxide associated with the removal of oxygen groups and the incorporation of fluorine ions as well as the reduction of conjugated double bonds and the controlled incorporation of nitrogen into thin RGOFN films.
View Article and Find Full Text PDFPhotopharmacology is a booming research area requiring a new generation of agents possessing simultaneous functions of photoswitching and pharmacophore. It is important that any practical implementation of photopharmacology ideally requires spatial control of the medicinal treatment zone. Thus, advances in the study of substances meeting all the listed requirements will lead to breakthrough research in the coming years.
View Article and Find Full Text PDFA new, to the best of our knowledge, internal reference method has been developed for the study of the upconversion luminescence of nanoparticle suspensions. This method provides correct analysis and comparison of the luminescent signals obtained under different conditions. To excite the echo signals of samples, it is proposed to use the radiation from an optical parametric oscillator at two wavelengths for the simultaneous excitation of the upconversion luminescence of particles and the Raman scattering signal of the medium in the Stokes region of the spectrum.
View Article and Find Full Text PDFA solution of spectroscopic inverse problems, implying determination of target parameters of the research object via analysis of spectra of various origins, is an overly complex task, especially in case of strong variability of the research object. One of the most efficient approaches to solve such tasks is use of machine learning (ML) methods, which consider some unobvious information relevant to the problem that is present in the data. Here, we compare ML approaches to the problem of nanocomplex concentrations determination in human urine via optical absorption spectra, perform preliminary analysis of the data array, find optimal parameters for several of the most popular ML methods, and analyze the results.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2020
The luminescence intensity ratio method, exploiting the temperature-dependent luminescence of the thermally coupled energy levels, is regarded as a very promising approach for optical temperature measurement at the cellular level. In this study, it was found that bare NaYF:Yb/Tm nanoparticles cannot be used as a cellular thermosensor in principle because of their tendency to aggregate, which significantly affects the luminescent properties of the complex, introducing uncertainty in the intensity ratio measurement. NaYF:Yb/Tm up-conversion nanoparticles, coated with polyethylene glycol (PEG) and carboxyl groups (COOH), on the other hand, proved to be promising candidates for the role of thermosensors.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2020
The absolute luminescence quantum yield Q as a function of excitation wavelength λ in a wide spectral range 270-470 nm was measured for the first time for the group of carbon nanoparticles dispersed in water: carbon dots (CD), detonation nanodiamonds (DND), as well as detonation nanodiamonds decorated with carbon dots (CD-DND). The luminescence quantum yield for DND increased after functionalization; the CD-decorated DND demonstrated significantly higher Q values in the UV region of excitation. We found that the quantum yield for CD luminescence is 4-8 times higher than that for CD-DND luminescence, and 20 times higher than that for DND luminescence.
View Article and Find Full Text PDFHypothesis: Nanodiamonds, one of the most promising nanomaterials for the use in biomedicine, placed in the organisms are bound to interact with various amphiphilic lipids and their micelles. However, while the influence of surfactants, the close relative of lipids, on the properties of colloidal nanodiamonds is well studied, the influence of nanodiamonds on the properties of surfactants, lipids, and, therefore, on the structure of surrounding tissues, is poorly understood.
Experiment: In this work, the influence of interactions of hydrophobic and hydrophilic nanodiamonds with ionic surfactant sodium octanoate in water on hydrogen bonds, the properties of the surfactant and micelle formation were studied using Raman spectroscopy and dynamic light scattering technique.
In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks.
View Article and Find Full Text PDFThe principle possibility of extraction of fluorescence of nanoparticles in the presence of background autofluorescence of a biological environment using neural network algorithms is demonstrated. It is shown that the methods used allow detection of carbon nanoparticles fluorescence against the background of the autofluorescence of egg white with a sufficiently low concentration detection threshold (not more than 2 μg/ml for carbon dots 3 μg/ml and for nanodiamonds). It was also shown that the use of the input data compression can further improve the accuracy of solving the inverse problem by 1.
View Article and Find Full Text PDF