Publications by authors named "Kirill Grushin"

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers.

View Article and Find Full Text PDF

Evidence from biochemistry, genetics, and electron microscopy strongly supports the idea that a ring of Synaptotagmin is central to the clamping and release of synaptic vesicles (SVs) for synchronous neurotransmission. Recent direct measurements in cell-free systems suggest there are 12 SNAREpins in each ready-release vesicle, consisting of six peripheral and six central SNAREpins. The six central SNAREpins are directly bound to the Synaptotagmin ring, are directly released by Ca , and they initially open the fusion pore.

View Article and Find Full Text PDF

Here, we introduce the full functional reconstitution of genetically validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, and Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca. Using this setup, we identify new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca-triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca-dependent release, and high concentrations reduce clamping and permit extensive spontaneous release.

View Article and Find Full Text PDF

The critical presynaptic protein Munc13 serves numerous roles in the process of docking and priming synaptic vesicles. Here we investigate the functional significance of two distinct oligomers of the Munc13 core domain (Munc13C) comprising C1-C2B-MUN-C2C. Oligomer interface point mutations that specifically destabilized either the trimer or lateral hexamer assemblies of Munc13C disrupted vesicle docking, trans-SNARE formation, and Ca -triggered vesicle fusion in vitro and impaired neurotransmitter secretion and motor nervous system function in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study successfully reconstitutes key proteins involved in synaptic vesicle priming and release, enabling detailed examination of vesicle behavior before and after calcium-triggered release.
  • The researchers discover that diacylglycerol (DAG) plays a significant role in modulating vesicle priming and calcium-dependent release, showing that low DAG concentrations speed up release rates while high concentrations encourage spontaneous release.
  • Using a novel fusion assay, the study finds that Munc18 initiates the formation of the SNARE complex, while Munc13 enhances and speeds up this assembly in a DAG-dependent manner, revealing their cooperative functions in preparing vesicles for neurotransmitter release.
View Article and Find Full Text PDF

How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1-C2B-MUN-C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm.

View Article and Find Full Text PDF

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca influx. This Ca-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM).

View Article and Find Full Text PDF

Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups.

View Article and Find Full Text PDF

During calcium-regulated exocytosis, the constitutive fusion machinery is 'clamped' in a partially assembled state until synchronously released by calcium. The protein machinery involved in this process is known, but the supra-molecular architecture and underlying mechanisms are unclear. Here, we use cryo-electron tomography analysis in nerve growth factor-differentiated neuro-endocrine (PC12) cells to delineate the organization of the release machinery under the docked vesicles.

View Article and Find Full Text PDF

Neural networks are optimized to detect temporal coincidence on the millisecond timescale. Here, we offer a synthetic hypothesis based on recent structural insights into SNAREs and the C2 domain proteins to explain how synaptic transmission can keep this pace. We suggest that an outer ring of up to six curved Munc13 'MUN' domains transiently anchored to the plasma membrane via its flanking domains surrounds a stable inner ring comprised of synaptotagmin C2 domains to serve as a work-bench on which SNAREpins are templated.

View Article and Find Full Text PDF

The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.

View Article and Find Full Text PDF

Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved.

View Article and Find Full Text PDF

Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane.

View Article and Find Full Text PDF

Cryo-electron microscopy (Cryo-EM)(1) is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment(2). Coagulation Factor VIII (FVIII)(3) is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder.

View Article and Find Full Text PDF

We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions.

View Article and Find Full Text PDF

Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors.

View Article and Find Full Text PDF

Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages.

View Article and Find Full Text PDF