Publications by authors named "Kirill Alexandrov"

This protocol outlines the production and optimization of a eukaryotic Cell-Free Protein Expression System (CFPS) derived from the unicellular flagellate Leishmania tarentolae, referred to as Leishmania Translational Extract or LTE. Although this organism originally evolved as a parasite of geckos, it can be cultivated easily and inexpensively in flasks or bioreactors. Unlike Leishmania major, it is non-pathogenic to humans and does not require special laboratory precautions.

View Article and Find Full Text PDF

Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation.

View Article and Find Full Text PDF
Article Synopsis
  • Protein biosensors have great potential, but their development usually involves a trial-and-error method, prompting the need for modular designs for better target recognition.
  • A new workflow was created that uses advanced selection techniques to produce stable binding domains for specific targets, integrated into a unique biosensor architecture.
  • Testing on liver toxicity markers showed the method consistently yielded over 10 different binders in a week, though binder affinity did not necessarily correlate with biosensor performance, highlighting the importance of design interactions.
View Article and Find Full Text PDF

Eukaryotic cell-free protein expression systems enable rapid production of recombinant multidomain proteins in their functional form. A cell-free system based on the rapidly growing protozoan (LTE) has been extensively used for protein engineering and analysis of protein interaction networks. However, like other eukaryotic cell-free systems, LTE deteriorates at ambient temperatures and requires deep freezing for transport and storage.

View Article and Find Full Text PDF
Article Synopsis
  • The goal of synthetic biology and bionanotechnology is to create artificial allosteric protein switches to integrate with both biological and non-biological systems for processing information and energy.
  • Designing effective protein switches with specific performance metrics is challenging, but researchers have developed chimeric proteins that act as YES gate switches, achieving large dynamic ranges and quick response times.
  • The study also showcases the ability to reconfigure these YES gate switches into AND gate switches and assemble them into complex signaling networks, supporting advanced applications like drug biosensors and protein biomarkers.
View Article and Find Full Text PDF

The emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics.

View Article and Find Full Text PDF

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1β production.

View Article and Find Full Text PDF

Protein biosensors hold a promise to transform the way we collect physiological data by enabling quantification of biomarkers outside of specialized laboratory environment. However, achieving high specificity and sensitivity in homogeneous assay format remains challenging. Here we report construction of fluorescent biosensor arrays based on artificial allosteric α-amylase-activated PQQ-dependent glucose dehydrogenase (Amy-GDH).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored using the immunomodulatory properties of helminth proteins, specifically by creating a library of recombinant proteins from hookworms.
  • They identified 20 proteins that showed significant anti-inflammatory effects in a mouse model, which could lead to novel treatments for IBD and other inflammatory diseases.
View Article and Find Full Text PDF

Biological homeostasis is a dynamic and elastic equilibrium of countless interlinked biochemical reactions. A key goal of life sciences is to understand these dynamics; bioengineers seek to reconfigure such networks. Both goals require the ability to monitor the concentration of individual intracellular metabolites with sufficient spatiotemporal resolution.

View Article and Find Full Text PDF

Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches.

View Article and Find Full Text PDF

Biological information processing networks rely on allosteric protein switches that dynamically interconvert biological signals. Construction of their artificial analogues is a central goal of synthetic biology and bioengineering. Receptor domain insertion is one of the leading methods for constructing chimeric protein switches.

View Article and Find Full Text PDF

Advances in protein engineering resulted in increased efforts to create protein biosensors that can replace instrumentation-heavy analytical and diagnostic methods. Sensitivity, amenability to multiplexing, and manufacturability remain to be among the key issues preventing broad utilization of protein biosensors. Here, we attempt to address these by constructing arrays utilizing protein biosensors based on the artificial allosteric variant of PQQ-glucose dehydrogenase (GDH).

View Article and Find Full Text PDF

Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors.

View Article and Find Full Text PDF

Allostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation.

View Article and Find Full Text PDF

Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment.

View Article and Find Full Text PDF

Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics.

View Article and Find Full Text PDF

Rapid techniques for producing high-quality recombinant proteins are essential for fast protein functional analysis, as well as various screening applications. Cell-free protein expression is an enabling tool in protein research capable of producing high-quality proteins within a few hours. In this chapter, we describe the use of a Leishmania tarentolae-based cell-free expression system to produce antibody fragments coupled to the analysis of their interaction with their ligands.

View Article and Find Full Text PDF

Enzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors.

View Article and Find Full Text PDF

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation.

View Article and Find Full Text PDF

Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10-fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain/ligand complexes.

View Article and Find Full Text PDF

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the vulnerability of human populations to novel viral pressures, despite the vast array of epidemiological and biomedical tools now available. Notably, modern human genomes contain evolutionary information tracing back tens of thousands of years, which may help identify the viruses that have impacted our ancestors-pointing to which viruses have future pandemic potential. Here, we apply evolutionary analyses to human genomic datasets to recover selection events involving tens of human genes that interact with coronaviruses, including SARS-CoV-2, that likely started more than 20,000 years ago.

View Article and Find Full Text PDF