We have investigated interactions of galeterone and its pharmacologically active metabolite - 3-keto-Δ4-galeterone (D4G) - with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). It was shown by absorption spectroscopy that both compounds induce type I spectral changes of CYP21A2. Spectral dissociation constants (K ) of complexes of CYP21A2 with galeterone or D4G were calculated as 3.
View Article and Find Full Text PDFThe interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1).
View Article and Find Full Text PDF