Structural features of proton-deficient heteroaromatic natural products, such as the breitfussins, can severely complicate their characterization by NMR spectroscopy. For the breitfussins in particular, the constitution of the five-membered oxazole central ring cannot be unequivocally established conventional NMR methods when the 4'-position is halogenated. The level of difficulty is exacerbated by 4'-iodination, as the accuracy with which theoretical NMR parameters are determined relies extensively on computational treatment of the relativistic effects of the iodine atom.
View Article and Find Full Text PDFAmbiguities and errors in the structural assignment of organic molecules hinder both drug discovery and total synthesis efforts. Newly described NMR experimental approaches can provide valuable structural details and a complementary means of structure verification. The caulamidines are trihalogenated alkaloids from a marine bryozoan with an unprecedented structural scaffold.
View Article and Find Full Text PDFUnsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1-, 1,n-, and inverted (1)J(CC) 1,n-ADEQUATE spectra to afford carbon-carbon correlation spectra that allow the extraction of direct ((1)J(CC)), long-range ((n)J(CC), where n ≥ 2), and (1)J(CC)-edited long-range correlation data, respectively. Covariance processing of HMBC and 1,1-ADEQUATE spectra has also recently been reported, allowing convenient, high-sensitivity access to (n)J(CC) correlation data equivalent to the much lower sensitivity n,1-ADEQUATE experiment.
View Article and Find Full Text PDFEstablishing the carbon skeleton of a molecule greatly facilitates the process of structure elucidation, leaving only heteroatoms to be inserted, heterocyclic rings to be closed, and stereochemical features to be defined. INADEQUATE, and more recently PANACEA, have been the only means of coming close to the goal of totally defining the carbon skeleton of a molecule. Unfortunately, the extremely low sensitivity and prodigious sample requirements of these experiments and the multiple receiver requirement for the latter experiment have severely restricted the usage of these experiments.
View Article and Find Full Text PDF1,1-ADEQUATE and the related long-range 1,n- and n,1-ADEQUATE variants were developed to provide an unequivocal means of establishing (2)J(CH) and the equivalent of (n)J(CH) correlations where n = 3,4. Whereas the 1,1- and 1,n-ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1-variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1-ADEQUATE experiment begins with an HMBC-type (n)J(CH) magnetization transfer, which leads to inherently lower sensitivity than the 1,1- and 1,n-ADEQUATE experiments that begin with a (1)J(CH) transfer.
View Article and Find Full Text PDFBackground: One of the largest challenges in chemistry today remains that of efficiently mining through vast amounts of data in order to elucidate the chemical structure for an unknown compound. The elucidated candidate compound must be fully consistent with the data and any other competing candidates efficiently eliminated without doubt by using additional data if necessary. It has become increasingly necessary to incorporate an in silico structure generation and verification tool to facilitate this elucidation process.
View Article and Find Full Text PDF1H-13C GHSQC and GHMBC spectra are irrefutably among the most valuable 2D NMR experiments for the establishment of unknown chemical structures. However, the indeterminate nature of the length of the long-range coupling(s) observed via the (n)J(CH)-optimized delay of the GHMBC experiment can complicate the interpretation of the data when dealing with novel chemical structures. A priori there is no way to differentiate 2J(CH) from (n)J(CH) correlations, where n ≥ 3.
View Article and Find Full Text PDFLong-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations.
View Article and Find Full Text PDFUtilizing (13)C-(13)C connectivity networks for the assembly of carbon skeletons from HSQC-ADEQUATE spectra was recently reported. HSQC-ADEQUATE data retain the resonance multiplicity information of the multiplicity-edited GHSQC spectrum and afford a significant improvement in the signal-to-noise (s/n) ratio relative to the 1,1-ADEQUATE data used in the calculation of the HSQC-ADEQUATE spectrum by unsymmetrical indirect covariance (UIC) processing methods. The initial investigation into the computation of HSQC-ADEQUATE correlation plots utilized overnight acquisition of the 1,1-ADEQUATE data used for the calculation.
View Article and Find Full Text PDFVarious experimental methods have been developed to unequivocally identify vicinal neighbor carbon atoms. Variants of the HMBC experiment intended for this purpose have included 2J3J-HMBC and H2BC. The 1,1-ADEQUATE experiment, in contrast, was developed to accomplish the same goal but relies on the (1) J(CC) coupling between a proton-carbon resonant pair and the adjacent neighbor carbon.
View Article and Find Full Text PDFThe availability of cryogenically cooled probes permits routine acquisition of data from low sensitivity pulse sequences such as inadequate and 1,1-adequate. We demonstrate that the use of cryo-probe generated 1,1-adequate data in conjunction with HMBC dramatically improves computer-assisted structure elucidation (CASE) both in terms of speed and accuracy of structure generation. In this study data were obtained on two dissimilar natural products and subjected to CASE analysis with and without the incorporation of two-bond specific data.
View Article and Find Full Text PDFThe reliable determination of stereocenters contained within chemical structures usually requires utilization of NMR data, chemical derivatization, molecular modeling, quantum-mechanical (QM) calculations and, if available, X-ray analysis. In this article, we show that the number of stereoisomers which need to be thoroughly verified, can be significantly reduced by the application of NMR chemical shift calculation to the full stereoisomer set of possibilities using a fragmental approach based on HOSE codes. The applicability of this suggested method is illustrated using experimental data published for a series of complex chemical structures.
View Article and Find Full Text PDFLong-range homonuclear coupling pathways can be observed in COSY or GCOSY spectra by the acquisition of spectra with larger numbers of increments of the evolution period, t(1), than would normally be used. Alternatively, covariance processing of COSY-type spectra acquired with modest numbers of t(1) increments, allows the observation of multistage correlations. In this work results obtained from covariance-processed GCOSY spectra are fully analyzed and compared to normally processed COSY and 80 ms TOCSY spectra.
View Article and Find Full Text PDFSeveral groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra.
View Article and Find Full Text PDFThe efficacy of neural network (NN) and partial least-squares (PLS) methods is compared for the prediction of NMR chemical shifts for both 1H and 13C nuclei using very large databases containing millions of chemical shifts. The chemical structure description scheme used in this work is based on individual atoms rather than functional groups. The performances of each of the methods were optimized in a systematic manner described in this work.
View Article and Find Full Text PDFUnsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC).
View Article and Find Full Text PDFUtilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra.
View Article and Find Full Text PDFGHSQC-TOCSY experiments allow sorting of proton-proton connectivity information as a function of (13)C chemical shift. GHSQC-TOCSY is a relatively insensitive 2D NMR experiment. Given two coherence transfer experiments, A --> B and A --> C, it is possible to indirectly determine B <--> C.
View Article and Find Full Text PDFThere has been considerable interest over the past decade in the utilization of direct and long-range 1H- 15N heteronuclear shift correlation methods at natural abundance to facilitate the elucidation of small molecule structures. Recently, there has also been a high level of interest in the exploration of indirect covariance NMR methods. Our initial explorations in this area led to the development of unsymmetrical indirect covariance methods, which allow the calculation of hyphenated 2D NMR spectra such as 2D GHSQC-COSY and GHSQC-NOESY from the discrete component 2D NMR experiments.
View Article and Find Full Text PDFWe have recently demonstrated that unsymmetrical indirect covariance NMR methods can be used to mathematically calculate the equivalent of low sensitivity, hyphenated NMR experiments by combining data from a pair of higher sensitivity experiments. The present report demonstrates the application of this method to the combination of HSQC and NOESY spectra to provide results comparable to HSQC-NOESY data, albeit with greater sensitivity and with considerably less spectrometer time.
View Article and Find Full Text PDFContemporary Computer-Aided Structure Elucidation (CASE) systems are heavily based on the utilization of 2D NMR spectra. The utilization of HMBC/GHMBC and COSY/GCOSY correlations generally assumes that these correlations result from (2-3)JCH and (2-3)JHH spin-spin couplings, respectively, and consequently these values are used as the default setting in these systems. Our previous studies1,2 have shown that about half of the problems studied actually contain some correlations of 4-6 bonds, so-called "nonstandard" correlations.
View Article and Find Full Text PDFExpert systems for spectroscopic molecular structure elucidation have been developed since the mid-1960s. Algorithms associated with the structure generation process within these systems are deterministic; that is, they are based on graph theory and combinatorial analysis. A series of expert systems utilizing 2D NMR spectra have been described in the literature and are capable of determining the molecular structures of large organic molecules including complex natural products.
View Article and Find Full Text PDFIt was recently demonstrated that an IDR- (Inverted Direct Response) HSQC-TOCSY data set could be decomposed into a negatively phased direct response spectrum and a positively phased relayed response spectrum that could then be subjected to unsymmetrical indirect covariance processing for the removal of artifacts due to response overlap in the proton NMR spectrum of the molecule. Using experimentally discrete HSQC and HMBC data sets, it is shown that unsymmetrical indirect covariance processing of the pair of NMR spectra affords a presentation containing long-range carbon-carbon connectivity information. The method is demonstrated using strychnine as a model compound.
View Article and Find Full Text PDFIndirect covariance NMR offers an alternative method of extracting spin-spin connectivity information via the conversion of an indirect-detection heteronuclear shift-correlation data matrix to a homonuclear data matrix. Using an IDR (inverted direct response)-HSQC-TOCSY spectrum as a starting point for the indirect covariance processing, a spectrum that can be described as a carbon-carbon COSY experiment is obtained. These data are analogous to the autocorrelated 13C-13C double quantum INADEQUATE experiment except that the indirect covariance NMR spectrum establishes carbon-carbon connectivities only between contiguous protonated carbons.
View Article and Find Full Text PDFThe elucidation of chemical structures from 2D NMR data commonly utilizes a combination of COSY, HMQC/HSQC, and HMBC data. Generally COSY connectivities are assumed to mostly describe the separation of protons that are separated by 1 skeletal bond (3JHH), while HMBC connectivities represent protons separated from carbon atoms by 1 to 2 skeletal bonds (2JCH and 3JCH). Obviously COSY and HMBC connectivities of lengths greater than those described have been detected.
View Article and Find Full Text PDF