Publications by authors named "Kiril Hristov"

We study four-derivative corrections to four-dimensional N=2 minimal gauged supergravity controlled by two real constants. The solutions of the equations of motion in the two-derivative theory are not modified by the higher-derivative corrections. We use this to derive a general formula for the regularized on-shell action for any asymptotically locally AdS_{4} solution of the theory and show how the higher-derivative corrections affect black hole thermodynamic quantities in a universal way.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated how a nanosecond pulsed electric field (nsPEF) affects membrane permeability in HEK293 cells, focusing on those with and without CaV1.3 L-type voltage-gated calcium channels (VGCC) using different voltage levels (0, 1.4, 1.8, and 2.3 kV/cm).
  • - Results showed that at 1.8 kV/cm, around 50% of cells experienced a lasting increase in membrane conductance, while at 2.3 kV/cm, all cells were affected, indicating that higher voltages enhance membrane permeabilization.
  • - Cells expressing VGCC displayed about twice the increase in conductance compared to
View Article and Find Full Text PDF

Estrogens have an important role in regulating detrusor smooth muscle (DSM) function. However, the underlying molecular and cellular mechanisms by which estrogens control human DSM excitability and contractility are not well known. Here, we used human DSM specimens from open bladder surgeries on 27 patients to elucidate the mechanism by which 17-estradiol regulates large conductance voltage- and Ca-activated K (BK) channels, the most prominent K channels in human DSM We employed single BK channel recordings on inside-out excised membrane patches, perforated whole-cell patch-clamp on freshly isolated DSM cells, and isometric tension recordings on DSM-isolated strips to investigate the mechanism by which 17-estradiol activates BK channels.

View Article and Find Full Text PDF

In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability.

View Article and Find Full Text PDF

Transient receptor potential melastatin 4 (TRPM4) channels are Ca(2+)-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions.

View Article and Find Full Text PDF

Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens.

View Article and Find Full Text PDF

Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.

View Article and Find Full Text PDF

Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM.

View Article and Find Full Text PDF

The Ca (2+)-activated monovalent cation selective transient receptor potential melastatin 4 (TRPM4) channel has been recently identified in detrusor smooth muscle (DSM) of the urinary bladder. Two recent publications by our research group provide evidence in support of the novel hypothesis that TRPM4 channels enhance DSM excitability and contractility. This is a critical question as prior studies have primarily targeted hyperpolarizing currents facilitated by K(+) channels, but the depolarizing component in DSM cells is not well understood.

View Article and Find Full Text PDF

Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO), which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM) large conductance Ca(2+)-activated K(+) (BK) channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries.

View Article and Find Full Text PDF

Members of the transient receptor potential (TRP) channel superfamily, including the Ca(2+)-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca(2+) imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel.

View Article and Find Full Text PDF

The TRPM4 channel is a Ca(2+)-activated, monovalent cation-selective channel of the melastatin transient receptor potential (TRPM) family. The TRPM4 channel is implicated in the regulation of many cellular processes including the immune response, insulin secretion, and pressure-induced vasoconstriction of cerebral arteries. However, the expression and function of the TRPM4 channels in detrusor smooth muscle (DSM) have not yet been explored.

View Article and Find Full Text PDF

Overactive bladder (OAB) is often associated with increased involuntary detrusor smooth muscle (DSM) contractions during the bladder-filling phase. To develop novel therapies for OAB, it is critical to better understand the mechanisms that control DSM excitability and contractility. Recent studies showed that small-conductance Ca(2+)-activated K(+) (SK) channels, SK3 channels, in particular, regulate human DSM function.

View Article and Find Full Text PDF

Background And Purpose: Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca(2+) -activated K(+) (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function.

Experimental Approach: We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function.

View Article and Find Full Text PDF

Overactive bladder syndrome is frequently associated with increased detrusor smooth muscle (DSM) contractility. We tested the hypothesis that pharmacological activation of the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel with NS-1619, a selective BK channel opener, reduces the excitability and contractility of human DSM. We used the amphotericin-perforated whole cell patch-clamp technique on freshly isolated human DSM cells, live-cell Ca(2+) imaging, and isometric DSM tension recordings of human DSM strips obtained from open bladder surgeries.

View Article and Find Full Text PDF

The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.

View Article and Find Full Text PDF

Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot.

View Article and Find Full Text PDF

Voltage-gated K(+) (K(V)) channels are implicated in detrusor smooth muscle (DSM) function. However, little is known about the functional role of the heterotetrameric K(V) channels in DSM. In this report, we provide molecular, electrophysiological, and functional evidence for the presence of K(V)2.

View Article and Find Full Text PDF

In many species, β3-adrenergic receptors (β3-ARs) have been reported to play a primary role in pharmacologically induced detrusor smooth muscle (DSM) relaxation. However, their role in guinea pig DSM remains controversial. The aim of this study was to investigate whether β3-ARs are expressed in guinea pig DSM and to evaluate how BRL37344 and L-755,507, two selective β3-AR agonists, modulate guinea pig DSM excitability and contractility.

View Article and Find Full Text PDF

In the present study, we investigated both the age- and heat exposure-related redox changes of blood plasma by analyzing GSH, thiol status and carbonyl groups. Our results clearly indicated that the plasma redox balance shifted toward oxidation during both aging and acute heat exposure. To further confirm this age- and heat exposure-related redox shift, we quantified the changes in thiol content.

View Article and Find Full Text PDF

The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is expressed in many smooth muscle types, but its role in human detrusor smooth muscle (DSM) is unclear. With a multidisciplinary approach spanning channel molecules, single-channel activity, freshly isolated human DSM cells, intact DSM preparations, and the BK channel specific inhibitor iberiotoxin, we elucidated human DSM BK channel function and regulation. Native human DSM tissues were obtained during open surgeries from patients with no preoperative history of overactive bladder.

View Article and Find Full Text PDF

We investigated the role of large-conductance Ca(2+)-activated K(+) (BK) channels in beta3-adrenoceptor (beta3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific beta3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific beta3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344.

View Article and Find Full Text PDF

In urinary bladder smooth muscle (UBSM), stimulation of beta-adrenergic receptors (beta-ARs) leads to activation of the large-conductance Ca2+-activated K+ (BK) channel currents (Petkov GV and Nelson MT. Am J Physiol Cell Physiol 288: C1255-C1263, 2005). In this study we tested the hypothesis that the BK channel mediates UBSM relaxation in response to beta-AR stimulation using the highly specific BK channel inhibitor iberiotoxin (IBTX) and a BK channel knockout (BK-KO) mouse model in which the gene for the pore-forming subunit was deleted.

View Article and Find Full Text PDF

Ghrelin, a 28-amino acid peptide, known to exist in both acylated and des-acylated varieties, was identified as the first endogenous ligand of growth hormone secretagogue receptor in 1999. Various arteries are known to express ghrelin receptors, but the direct action of ghrelin on blood vessels has been unclear. In the present study we show that ghrelin concentration-dependently potentiates endothelin-1 (ET-1) induced tension development of guinea-pig renal artery, as measured using a wire-type isometric myography of vascular segments.

View Article and Find Full Text PDF

Hemin (10 microM) and carbon monoxide (CO) increased iberiotoxin-blockable IKCa in portal vein smooth muscle cells. CO-induced IKCa activation was abolished by 10 microM ODQ, 10 microM cyclopiazonic acid and 1 microM KT5823. The hemin-induced effect on IKCa was abolished by pretreatment with Sn-protoporphyrin IX, a heme oxygenase inhibitor and Fe2+ chelator but was insensitive to inhibitors of soluble guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG).

View Article and Find Full Text PDF