Publications by authors named "Kiran Wadhawan"

Climate change has profound effects on infectious disease dynamics, yet the impacts of increased short-term temperature fluctuations on disease spread remain poorly understood. We empirically tested the theoretical prediction that short-term thermal fluctuations suppress endemic infection prevalence at the pathogen's thermal optimum. This prediction follows from a mechanistic disease transmission model analyzed using stochastic simulations of the model parameterized with thermal performance curves (TPCs) from metabolic scaling theory and using nonlinear averaging, which predicts ecological outcomes consistent with Jensen's inequality (i.

View Article and Find Full Text PDF

Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a -parasite-predator cue system to evaluate if predation risk affects responses to a parasite.

View Article and Find Full Text PDF

Identifying ecological drivers of disease transmission is central to understanding disease risks. For vector-borne diseases, temperature is a major determinant of transmission because vital parameters determining the fitness of parasites and vectors are highly temperature-sensitive, including the extrinsic incubation period required for parasites to develop within the vector. Temperature also underlies dramatic differences in the individual-level variation in the extrinsic incubation period, yet the influence of this variation in disease transmission is largely unexplored.

View Article and Find Full Text PDF