Lung cancer is by far the leading cause of cancer death in the US. Recent studies have demonstrated the effectiveness of screening using low dose CT (LDCT) in reducing lung cancer related mortality. While lung nodules are detected with a high rate of sensitivity, this exam has a low specificity rate and it is still difficult to separate benign and malignant lesions.
View Article and Find Full Text PDFLung cancer is the deadliest type of cancer worldwide and late detection is the major factor for the low survival rate of patients. Low dose computed tomography has been suggested as a potential screening tool but manual screening is costly and time-consuming. This has fuelled the development of automatic methods for the detection, segmentation and characterisation of pulmonary nodules.
View Article and Find Full Text PDFRationale And Objectives: To explain predictions of a deep residual convolutional network for characterization of lung nodule by analyzing heat maps.
Materials And Methods: A 20-layer deep residual CNN was trained on 1245 Chest CTs from National Lung Screening Trial (NLST) trial to predict the malignancy risk of a nodule. We used occlusion to systematically block regions of a nodule and map drops in malignancy risk score to generate clinical attribution heatmaps on 103 nodules from Lung Image Database Consortium image collection and Image Database Resource Initiative (LIDC-IDRI) dataset, which were analyzed by a thoracic radiologist.
The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. Stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabeled patient volumes and fine-tuned with patches drawn from a limited number of patients ([Formula: see text], 40, 65). The results show negligible loss in performance even when SDAE was fine-tuned using 20 labeled patients.
View Article and Find Full Text PDF