An unexpected side product of a McMurry reaction was found to be a new [2.2]pyrenophane consisting of two pyrene units with different substitution patterns as well as different types and degrees of distortion from planarity. The new pyrenophane exhibits both monomer and intramolecular excimer fluorescence.
View Article and Find Full Text PDFThe first example of a BN-doped cycloparaphenylene BN-[10]CPP was synthesized and characterized. Its reactivity and photophysical properties were evaluated in direct comparison to its carbonaceous analogues Mes-[10]CPP and [10]CPP. While the photophysical properties of BN-[10]CPP remains similar to its carbonaceous analogues, the electronic structure changes associated with the introduction of a 1,2-azaborine BN heterocycle into a CPP scaffold enables facile and selective late-stage functionalizations that cannot be accomplished with carbonaceous CPPs.
View Article and Find Full Text PDFA gram-scale synthesis of a series of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n=7-9) has been accomplished as well as the first synthesis of the next higher homologue 1,1,10,10-tetramethyl[10](2,11)teropyrenophane. The scale-up of the original small-scale synthesis required the development of several heavily modified synthetic methods, including a chlorination/Friedel-Crafts alkylation protocol and an iodination/Wurtz coupling protocol, which were performed on 25-30 g and 30-60 g scales, respectively. Two separate sets of conditions for the key teropyrene-forming cyclodehydrogenation reaction at the end of the synthetic pathway were developed, an acid-promoted one for the two less strained congeners and an acid-free method for the two more strained homologues.
View Article and Find Full Text PDF1,1,9,9-Tetramethyl[9](2,11)teropyrenophane (TM9TP), a belt-shaped molecule, has a sizable cavity that molecules or ions could occupy. In this study, the question of whether TM9TP forms gas-phase ion-molecule complexes with metal cations (K , Rb , Cs ) situated inside or outside the TM9TP cavity was addressed using both experimental and computational methods. Complexes were trapped in a Fourier transform ion cyclotron resonance mass spectrometer and their structures were explored by some novel physical chemistry/mass spectrometry methods.
View Article and Find Full Text PDFAn improved synthetic pathway to the nanobelt-like 1,1,9,9-tetramethyl[9](2,11)teropyrenophane has been developed, and enables the synthesis of gram quantities of material. Key innovations are the development of a sequential chlorination/Friedel-Crafts alkylation reaction, a sequential iodination/Wurtz coupling reaction, and a room-temperature teropyrene-forming reaction. The teropyrenophane was found to form a very stable radical cation and undergo a completely regioselective fourfold bromination reaction.
View Article and Find Full Text PDFA new iterative bridge formation strategy has been employed in the synthesis of a series of [n](2,11)teropyrenophanes (n = 7-9). The generation of the nonplanar teropyrene system, which is calculated to be bent through 178.7° for the smallest homologue (n = 7), is accomplished using a VID reaction of a cyclophanemonoene precursor for the first time.
View Article and Find Full Text PDFSolid-state NMR (ssNMR) and ab initio quantum mechanical calculations are used in order to understand and to better characterize the molecular conformation and properties of [2.2]paracyclophane and 1,8-dioxa[8](2,7)pyrenophane. Both molecules are cyclophanes, consisting of an aromatic ring assembly and a cyclic aliphatic chain connected to both ends of the aromatic portion.
View Article and Find Full Text PDF