Publications by authors named "Kiran Pawar"

Article Synopsis
  • The study investigates the cardiovascular dysfunction caused by spinal cord injury (SCI) and assesses the efficacy of four neuroprotective agents in aiding cardiovascular recovery.
  • Male Wistar rats were given spinal contusions and treated with Fluoxetine, Glyburide, Valproic acid, and Indomethacin, with outcomes measured through blood pressure changes, locomotor function, and lesion area.
  • The results showed that Indomethacin and Valproic acid led to high mortality rates, while Fluoxetine and Glyburide were tolerated, but none of the treatments significantly improved blood pressure control or locomotor function compared to the control group.
View Article and Find Full Text PDF

The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria.

View Article and Find Full Text PDF

Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.

View Article and Find Full Text PDF

The Western Himalayas offer diverse environments for investigating the diversity and distribution of microbial communities and their response to both the abiotic and biotic factors across the entire altitudinal gradient. Such investigations contribute significantly to our understanding of the complex ecological processes that shape microbial diversity. The proposed study focuses on the investigation of the bacterial and fungal communities in the forest and alpine grasslands of the Western Himalayan region, as well as their relationship with the physicochemical parameters of soil.

View Article and Find Full Text PDF

Regeneration in the injured spinal cord is limited by physical and chemical barriers. Acute implantation of a multichannel poly(lactide-co-glycolide) (PLG) bridge mechanically stabilizes the injury, modulates inflammation, and provides a permissive environment for rapid cellularization and robust axonal regrowth through this otherwise inhibitory milieu. However, without additional intervention, regenerated axons remain largely unmyelinated (<10%), limiting functional repair.

View Article and Find Full Text PDF

Fungus-growing termites are eusocial insects that represent one of the most efficient and unique systems for lignocellulose bioconversion, evolved from a sophisticated symbiosis with lignocellulolytic fungi and gut bacterial communities. Despite a plethora of information generated during the last century, some essential information on gut bacterial profiles and their unique contributions to wood digestion in some fungus-growing termites is still inadequate. Hence, using the culture-dependent approach, the present study aims to assess and compare the diversity of lignocellulose-degrading bacterial symbionts within the gut systems of three fungus-growing termites: , and sp.

View Article and Find Full Text PDF

Nanotechnology has been comprehensively applied as a new approach to managing wound healing. Particularly, nanoclays are being used to improve traditional wound healing approaches or new therapies. Nanoclays are nanoscale aluminosilicates with remarkable intrinsic properties, including the capacity to promote hemostatic response, anti-inflammatory effects, angiogenesis, and re-epithelization.

View Article and Find Full Text PDF

The progress in new delivery systems for active ingredients has boosted the dermopharmaceutical and cosmetic fields by allowing formulations to display enhanced skin permeation capabilities. Cyclodextrins (CDs) are cyclic oligosaccharides able to form host-guest inclusion complexes with guest active molecules, resulting in improved physicochemical properties of such molecules. The incorporation of CDs in dermopharmaceutical and cosmetics formulations has received much attention since the late 1970 s by enhancing modulation of the passage through the skin and vectorization into the target site while simultaneously offering a biocompatible delivery system.

View Article and Find Full Text PDF

Due to being low cost and eco-friendly, biological nanomaterial synthesis and development have made broad spectral progress. This study aimed to optimize the phytomediated synthesis of catalytically active, antibacterial palladium nanoparticles (PdNPs) for adsorption-based removal of ethidium bromide (EtBr) from an aqueous solution. Optimization of synthesis demonstrated that a precursor to extract ratio of 4:1, pH 3, and incubation at 80 °C for 60 min were the optimum conditions that led to the synthesis of negatively charged, highly stable, polycrystalline, spherical, and monodispersed PdNPs of 5-10 nm.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in devastating cardiovascular dysfunction. Noxious stimuli from the rectum during bowel routine often trigger life-threatening blood pressure surges, termed autonomic dysreflexia (AD). Rectal application of anesthetic lidocaine jelly has been recommended during bowel care to reduce AD severity by mitigating sensory input.

View Article and Find Full Text PDF

Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing.

View Article and Find Full Text PDF

Bioconversion of lignocellulose into renewable energy and commodity products faces a major obstacle of inefficient saccharification due to its recalcitrant structure. In nature, lignocellulose is efficiently degraded by some insects, including termites and beetles, potentially due to the contribution from symbiotic gut bacteria. To this end, the presented investigation reports the isolation and characterization of cellulolytic bacteria from the gut system of red flour beetle, .

View Article and Find Full Text PDF

: Acne vulgaris is a chronic inflammatory skin disorder that affects an extremely concerning percentage of teenagers (ca. 85%), gathering serious negative impacts on the social life and psychological well-being of individuals. Conventional topical formulations for acne show low tolerability and side effects, such as skin irritation, leading to a decrease in the user's adherence to therapy.

View Article and Find Full Text PDF

Background: Cotton bollworm, is a widely distributed, devastating pest of over 200 crop plants that mainly consist of some cellulosic materials. Despite its economic importance as a pest, little is known about the diversity and community structure of gut symbiotic bacteria potentially functioned in cellulose digestion in different gut-sections of . In view of this lacuna, we attempted to evaluate and characterize cellulose-degrading bacteria (CDB) from foregut, midgut, and hindgut -regions of by using a culture-dependent approach.

View Article and Find Full Text PDF

The present study demonstrates the extraction and identification of phospholipids (PLs) from peanut seed for formulation of liposomes for pH and thermo-sensitive delivery and release of folic acid (FA), levodopa (DOPA) and, camptothecin (CPT). The TLC, FTIR and GC-MS based characterization of extracted peanut PLs showed phosphatidylethanolamine, cardiolipin and phosphatidic acid as major PLs and palmitic acid and oleic acid as major fatty acids. Liposomes (LSMs) of size 1-2 μm formulated by optimized thin-film hydration method were found to entrap FA, DOPA and CPT with 58, 61.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to severe impairment in cardiovascular control, commonly manifested as a rapid, uncontrolled rise in blood pressure triggered by peripheral stimuli-a condition called autonomic dysreflexia. The objective was to demonstrate the translational potential of noninvasive transcutaneous stimulation (TCS) in mitigating autonomic dysreflexia following SCI, using pre-clinical evidence and a clinical case report. In rats with SCI, we show that TCS not only prevents the instigation of autonomic dysreflexia, but also mitigates its severity when delivered during an already-triggered episode.

View Article and Find Full Text PDF

Background: The development of nano delivery systems is rapidly emerging area of nanotechnology applications where nanomaterials (NMs) are employed to deliver therapeutic agents to specific site in a controlled manner. To accomplish this, green synthesis of NMs is widely explored as an eco-friendly method for the development of smart drug delivery system. In the recent times, use of green synthesized NMs, especially metallic NMs have fascinated the scientific community as they are excellent carriers for drugs.

View Article and Find Full Text PDF

The safety of drinking water is one of the most important public health issues as very high concentrations of metal like iron acts as a useful surrogate for other heavy metals. The present study demonstrates the use of almond skin extract (ASE) for simple and rapid synthesis of antibacterial silver nanoparticles (AgNPs) for the development of a highly selective and sensitive colorimetric method for the detection of Fe in water samples. The optimization of various biogenic synthesis parameters showed ASE:AgNO ratio of 4:1,1 mM of AgNO, pH 6 and incubation for 10 min at 70 °C were the optimum conditions.

View Article and Find Full Text PDF

Currently, the synthesis of nanostructured inorganic materials with tunable morphology is still a great challenge. In this study, almond skin extract was employed for the biogenic synthesis of selenium nanoparticles with tunable morphologies such as rods and brooms. The effects of various synthesis parameters on morphologies were investigated using UV-Visible spectroscopy and scanning electron microscopy (SEM) which indicated that selenium brooms (SeBrs) were best synthesized using almond skin extract and optimized conditions of SeO, ascorbic acid, pH, incubation temperature and time.

View Article and Find Full Text PDF

Presently, nanotechnology is being foreseen to play an important role in developing analytical assays for the detection of pollutants like mercury (Hg). In this study, Kokum fruit mediated silver nanoparticles (AgNPs) were differentially centrifuged to prepare anionic, monodispersed AgNPs to develop a highly sensitive, colorimetric and memristor-based assay for detection of Hg in water samples. The investigation of the highly selective reaction between AgNPs and Hg using HAADF-STEM images and EDS spectrum indicated the amalgam formation through etching and under potential deposition which resulted in a visible color change from brown to colorless, change in SPR intensity and also change in memristive switching like property of AgNPs.

View Article and Find Full Text PDF

In this work, was used for the optimum biogenic synthesis of antibacterial silver nanoparticles (AgNPs) which were applied for colorimetric detection of platinum ions (Pt). The optimum synthesis conditions were 2 mM AgNO pH 9 and incubation at 60 °C for 24 h. The FTIR spectra indicated that biomolecules such as amino acids, proteins or enzymes from were involved in the synthesis of AgNPs in the size range of 10-50 nm.

View Article and Find Full Text PDF

Bacteria mediated synthesis of magnetic nanoparticles (MNPs) for biotechnological applications is an important area of nanotechnology. This study demonstrates the use of iron tolerant bacterium for synthesis of MNPs for cellulase immobilization and photocatalytic activity. The enrichment, isolation, screening and molecular identification led to the selection of Pseudomonas stutzeri KDP_M2 with high degree of iron tolerance.

View Article and Find Full Text PDF

Biomaterial scaffolds are under investigation as therapeutic tools to bridge nerve endings following traumatic peripheral nerve injury. The goal is to develop biocompatible nerve guidance conduits (NGCs) with internal guiding structures that promote longitudinally oriented cell migration and regeneration. In the present study, a nonwoven mesh (NWM) made of a recombinant spider silk protein was processed into a tubular structure, ensuring structural integrity of enclosed microfluidics-produced collagen fibers for cell and neurite guidance.

View Article and Find Full Text PDF

The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams.

View Article and Find Full Text PDF

Recently, nanomaterial mediated degradation of water polluting industrial pollutant and dyes has become a topic of great interest. This study demonstrates enrichment, isolation, screening and molecular identification of iron tolerant Bacillus species for biosynthesis of iron oxide magnetic nanoparticles (IOMNPs). Synthesis parameters such as 5 mM FeCl 7 days of static incubation at 37 °C and slightly alkaline pH range of 7-7.

View Article and Find Full Text PDF