Publications by authors named "Kiran Nadella"

Purpose: Insulin-like growth factor-II (IGF2), a key regulator of cell growth and development, is tightly regulated in its expression by epigenetic control that maintains its monoallelic expression in most tissues. Biallelic expression of IGF2 resulting from loss of imprinting (LOI) has been reported in adrenocortical tumors. In this study, we wanted to check whether adrenocortical lesions due to PRKAR1A mutations lead to increased IGF2 expression from LOI and compare these findings to those in other benign adrenal lesions.

View Article and Find Full Text PDF

Protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) defects lead to primary pigmented nodular adrenocortical disease (PPNAD). The KIT protooncogene (c-KIT) is not known to be expressed in the normal adrenal cortex (AC). In this study, we investigated the expression of c-KIT and its ligand, stem cell factor (SCF), in PPNAD and other cortisol-producing tumors of the adrenal cortex.

View Article and Find Full Text PDF

Background: Familial testicular germ cell tumors (FTGCTs) are hypothesized to result from the combined interaction of multiple low-penetrance genes. We reported inactivating germline mutations of the cAMP-binding phosphodiesterase 11A (PDE11A) as modifiers of FTGCT risk. Recent genome-wide association studies have identified single-nucleotide polymorphisms in the KITLG gene, the ligand for the cKIT tyrosine kinase receptor, as strong modifiers of susceptibility to both familial and sporadic testicular germ cell tumors.

View Article and Find Full Text PDF

Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA.

View Article and Find Full Text PDF

Background: Adult T-cell leukemia/lymphoma (ATLL) is initiated by infection with human T-lymphotropic virus type-1 (HTLV-1); however, additional host factors are also required for T-cell transformation and development of ATLL. The HTLV-1 Tax protein plays an important role in the transformation of T-cells although the exact mechanisms remain unclear. Parathyroid hormone-related protein (PTHrP) plays an important role in the pathogenesis of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of ATLL patients.

View Article and Find Full Text PDF

Dysregulation of protein kinase A (PKA) activity, caused by loss of function mutations in PRKAR1A, is known to induce tumor formation in the inherited tumor syndrome Carney complex (CNC) and is also associated with sporadic tumors of the thyroid and adrenal. We have previously shown that Prkar1a(+/-) mice develop schwannomas reminiscent of those seen in CNC and that similar tumors are observed in tissue-specific knockouts (KO) of Prkar1a targeted to the neural crest. Within these tumors, we have previously described the presence of epithelial islands, although the nature of these structures was unclear.

View Article and Find Full Text PDF

Carney complex (CNC) is an autosomal dominant neoplasia syndrome caused by inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of protein kinase A (PKA). This genetic defect induces skin pigmentation, endocrine tumors, myxomas, and schwannomas. Some patients with the complex also develop myxoid bone tumors termed osteochondromyxomas.

View Article and Find Full Text PDF

Phosphorylation is a key event in cell cycle control, and dysregulation of this process is observed in many tumors, including those associated with specific inherited neoplasia syndromes. We have shown previously that patients with the autosomal dominant tumor predisposition Carney complex carry inactivating mutations in the PRKAR1A gene, which encodes the type 1A regulatory subunit of protein kinase A (PKA), the cyclic AMP-dependent protein kinase. This defect was associated with dysregulation of PKA signaling, and genetic analysis has suggested that complete loss of the gene may be required for tumorigenesis.

View Article and Find Full Text PDF