Publications by authors named "Kiran Mahasenan"

Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP.

View Article and Find Full Text PDF

The spiral shape of intestinal pathogen Campylobacter jejuni is critical for invasion of intestinal mucosa epithelial cells. Insofar as this cell morphology plays a role in the pathology of C. jejuni infection, its restructuring by pharmacological intervention could be an unexplored means to prevention of infection.

View Article and Find Full Text PDF

The penicillin-binding proteins are the enzyme catalysts of the critical transpeptidation crosslinking polymerization reaction of bacterial peptidoglycan synthesis and the molecular targets of the penicillin antibiotics. Here, we report a combined crystallographic, small-angle X-ray scattering (SAXS) in-solution structure, computational and biophysical analysis of PBP1 of PBP1), providing mechanistic clues about its function and regulation during cell division. The structure reveals the pedestal domain, the transpeptidase domain, and most of the linker connecting to the "penicillin-binding protein and serine/threonine kinase associated" (PASTA) domains, but not its two PASTA domains, despite their presence in the construct.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the coronavirus disease of 2019 (COVID-19). Its genome encodes two open reading frames for two large proteins, PP1a and PP1ab. Within the two polypeptide stretches, there are two proteases that process the large proteins into 15 discrete proteins essential for the assembly of the virion during its replication.

View Article and Find Full Text PDF

The need for new classes of antibacterials is genuine in light of the dearth of clinical options for the treatment of bacterial infections. The prodigious discoveries of antibiotics during the 1940s to 1970s, a period wistfully referred to as the Golden Age of Antibiotics, have not kept up in the face of emergence of resistant bacteria in the past few decades. There has been a renewed interest in old drugs, the repurposing of the existing antibiotics and pairing of synergistic antibiotics or of an antibiotic with an adjuvant.

View Article and Find Full Text PDF

We report herein the syntheses of 79 derivatives of the 4(3)-quinazolinones and their structure-activity relationship (SAR) against methicillin-resistant (MRSA). Twenty one analogs were further evaluated in in vitro assays. Subsequent investigation of the pharmacokinetic properties singled out compound (()-3-(5-carboxy-2-fluorophenyl)-2-(4-cyanostyryl)quinazolin-4(3)-one) for further study.

View Article and Find Full Text PDF

BglX is a heretofore uncharacterized periplasmic glycoside hydrolase (GH) of the human pathogen . X-ray analysis identifies it as a protein homodimer. The two active sites of the homodimer comprise catalytic residues provided by each monomer.

View Article and Find Full Text PDF

SPOR domains are widely present in bacterial proteins that recognize cell-wall peptidoglycan strands stripped of the peptide stems. This type of peptidoglycan is enriched in the septal ring as a product of catalysis by cell-wall amidases that participate in the separation of daughter cells during cell division. Here, we document binding of synthetic denuded glycan ligands to the SPOR domain of the lytic transglycosylase RlpA from Pseudomonas aeruginosa (SPOR-RlpA) by mass spectrometry and structural analyses, and demonstrate that indeed the presence of peptide stems in the peptidoglycan abrogates binding.

View Article and Find Full Text PDF

The quinazolinones are a new class of antibacterials with efficacy against methicillin-resistant (MRSA). The quinazolinones target cell wall biosynthesis and have a unique mechanism of action by binding to the allosteric site of penicillin-binding protein 2a (PBP 2a). We investigated the potential for synergism of a lead quinazolinone with several antibiotics of different classes using checkerboard and time-kill assays.

View Article and Find Full Text PDF

Lytic transglycosylases (LTs) are bacterial enzymes that catalyze the cleavage of the glycan strands of the bacterial cell wall. The mechanism of this cleavage is a remarkable intramolecular transacetalization reaction, accomplished by an ensemble of active-site residues. Because the LT reaction occurs in parallel with the cell wall bond-forming reactions catalyzed by the penicillin-binding proteins, simultaneous inhibition of both enzymes can be particularly bactericidal to Gram-negative bacteria.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) are a significant health problem. A single existing FDA-approved drug for this ailment, becaplermin, is not standard-of-care. We previously demonstrated that upregulation of active matrix metalloproteinase (MMP)-9 is the reason that the diabetic wound in mice is recalcitrant to healing and that MMP-8 participates in wound repair.

View Article and Find Full Text PDF

The metalloproteinase ADAM10 has been reported as an important target for drug discovery in several human diseases. In this vein, (6,7)--hydroxy-5-methyl-6-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazine-1-carbonyl)-5-azaspiro[2.5]octane-7-carboxamide (compound ) has been reported as a selective ADAM10 inhibitor.

View Article and Find Full Text PDF

β-Lactam antibiotics inhibit cell-wall transpeptidases, preventing the peptidoglycan, the major constituent of the bacterial cell wall, from cross-linking. This causes accumulation of long non-cross-linked strands of peptidoglycan, which leads to bacterial death. , a nefarious bacterial pathogen, attempts to repair this aberrantly formed peptidoglycan by the function of the lytic transglycosylase Slt.

View Article and Find Full Text PDF

Lytic transglycosylases (LTs) catalyze the non-hydrolytic cleavage of the bacterial cell wall by an intramolecular transacetalization reaction. This reaction is critically and broadly important in modifications of the bacterial cell wall in the course of its biosynthesis, recycling, manifestation of virulence, insertion of structural entities such as the flagellum and the pili, among others. The first QM/MM analysis of the mechanism of reaction of an LT, that for the Escherichia coli MltE, is undertaken.

View Article and Find Full Text PDF

Transpeptidases, members of the penicillin-binding protein (PBP) families, catalyze cross-linking of the bacterial cell wall. This transformation is critical for the survival of bacteria, and it is the target of inhibition by β-lactam antibiotics. We report herein our structural insights into catalysis by the essential PBP2x of Streptococcus pneumoniae by disclosing a total of four X-ray structures, two computational models based on the crystal structures, and molecular-dynamics simulations.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) have numerous physiological functions and share a highly similar catalytic domain. Differential dynamical information on the closely related human MMP-8, -13, and -14 was integrated onto the benzoxazinone molecular template. An library of 28,099 benzoxazinones was generated and evaluated in the context of the molecular-dynamics information.

View Article and Find Full Text PDF

The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the β-lactam resistance enzyme, β-lactamase. The enzyme catalyzes hydrolysis of N-acetyl-β-d-glucosamine-(1→4)-1,6-anhydro-N-acetyl-β-d-muramyl-peptide (1) to N-acetyl-β-d-glucosamine (2) and 1,6-anhydro-N-acetyl-β-d-muramyl-peptide (3).

View Article and Find Full Text PDF

The mechanism of the β-lactam antibacterials is the functionally irreversible acylation of the enzymes that catalyze the cross-linking steps in the biosynthesis of their peptidoglycan cell wall. The Gram-positive pathogen Staphylococcus aureus uses one primary resistance mechanism. An enzyme, called penicillin-binding protein 2a (PBP2a), is brought into this biosynthetic pathway to complete the cross-linking.

View Article and Find Full Text PDF

Active in the aqueous cellular environment where a massive excess of water is perpetually present, enzymes that catalyze the transfer of an electrophile to a non-water nucleophile (transferases) require specific strategies to inhibit mechanistically related hydrolysis reactions. To identify principles that confer transferase versus hydrolase reaction specificity, we exploited two enzymes that use highly similar catalytic apparatuses to catalyze the transglycosylation (a transferase reaction) or hydrolysis of α-1,3-glucan linkages in the cyclic tetrasaccharide cycloalternan (CA). We show that substrate binding to non-catalytic domains and a conformationally stable active site promote CA transglycosylation, whereas a distinct pattern of active site conformational change is associated with CA hydrolysis.

View Article and Find Full Text PDF

Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-2 knockout (KO) mice show impaired neurological recovery after spinal cord injury (SCI), suggesting that this proteinase is critical to recovery processes. However, this finding in the KO has been confounded by a compensatory increase in MMP-9. We synthesized the thiirane mechanism-based inhibitor ND-378 and document that it is a potent (nanomolar) and selective slow-binding inhibitor of MMP-2 that does not inhibit the closely related MMP-9 and MMP-14.

View Article and Find Full Text PDF

A family of 11 lytic transglycosylases in Pseudomonas aeruginosa, an opportunistic human pathogen, turn over the polymeric bacterial cell wall in the course of its recycling, repair, and maturation. The functions of these enzymes are not fully understood. We disclose herein that SltB3 of P.

View Article and Find Full Text PDF

The oxadiazole antibacterials, a class of newly discovered compounds that are active against Gram-positive bacteria, target bacterial cell-wall biosynthesis by inhibition of a family of essential enzymes, the penicillin-binding proteins. Ligand-based 3D-QSAR analyses by comparative molecular field analysis (CoMFA), comparative molecular shape indices analysis (CoMSIA) and Field-Based 3D-QSAR evaluated a series of 102 members of this class. This series included inactive compounds as well as compounds that were moderately to strongly antibacterial against Staphylococcus aureus.

View Article and Find Full Text PDF

Epigenetic events that are essential drivers of lymphocyte transformation remain incompletely characterized. We used models of Epstein-Barr virus (EBV)-induced B-cell transformation to document the relevance of protein arginine methyltransferase 5 (PRMT5) to regulation of epigenetic-repressive marks during lymphomagenesis. EBV(+) lymphomas and transformed cell lines exhibited abundant expression of PRMT5, a type II PRMT enzyme that promotes transcriptional silencing of target genes by methylating arginine residues on histone tails.

View Article and Find Full Text PDF