Rapidly developing polymeric micelles as potential targeting carriers has intensified the need for better understanding of the underlying principles related to the selection of suitable delivery materials for designing, characterizing, drug loading, improving stability, targetability, biosafety and efficacy. The emergence of advanced analytical tools such as fluorescence resonance energy transfer and dissipative particle dynamics has identified new dimensions of these nanostructures and their behavior in much greater details. This review summarizes recent efforts in the development of polymeric micelles with respect to their architecture, formulation strategy and targeting possibilities along with their preclinical and clinical aspects.
View Article and Find Full Text PDFBackground: Presenile cataract is commonly idiopathic in origin. However, patients with presenile cataract could have an underlying genetic abnormality of galactose metabolism. We studied the association, if any, between idiopathic presenile cataract and galactose-1 -phosphate uridyl transferase (GALT) gene mutation.
View Article and Find Full Text PDFAim: To develop insulin loaded deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles and carry out in vitro and in vivo testing of enteric coated granules comprising these nanoparticles.
Materials & Methods: Insulin loaded nanoparticles were prepared and characterized in vitro. Cellular uptake was studied using hyperspectral and live cell confocal microscopy.
Increased interest in developing novel micro/nanohydrogel based formulations for delivering macromolecular therapeutics has led to multiple choices of biodegradable and biocompatible natural polymers. This interest is largely due to the availability of large number of highly pure recombinant proteins and peptides with tunable properties as well as RNA interference technology that are used in treating some of the deadly diseases that were difficult to be treated by the conventional approaches. The majority of marketed drugs that are now available are in the form of injectables that pose limited patient compliance and convenience.
View Article and Find Full Text PDFThe search for an effective and reliable oral insulin delivery system has been a major challenge facing pharmaceutical scientists for over many decades. Even though innumerable carrier systems that protect insulin from degradation in the GIT with improved membrane permeability and biological activity have been developed, yet a clinically acceptable device is not available for human application. Efforts in this direction are continuing at an accelerated speed.
View Article and Find Full Text PDFPharmacokinetics, biodistribution and antitumour activity of 5-fluorouracil (5-FU)-loaded polyhydroxybutyrate (PHB) and cellulose acetate phthalate (CAP) blend microspheres were investigated in chemically induced colorectal cancer in albino male Wistar rats and compared with pristine 5-FU given as a suspension. The microspheres were characterised for particle size, encapsulation efficiency, in vitro release and in vitro cytotoxicity on human HT-29 colon cancer cell line. Spherical particles with a mean size of 44 ± 11 µm were obtained that showed sustained release of 5-FU.
View Article and Find Full Text PDFIntroduction: The discovery of synthetic small interfering RNA (siRNA) has led to a surge of interest in harnessing RNA interference (RNAi) technology for biomedical applications and drug development. Even though siRNA can be a powerful therapeutic drug, its delivery remains a major challenge, due to the difficulty in its cellular uptake. Naked siRNA has a biological half-life of less than an hour in human plasma.
View Article and Find Full Text PDFGastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose (NaCMC) or carbopol 934P was added to alter the drug release profile or the dimensional stability of the formulation.
View Article and Find Full Text PDFA multiple-unit-type oral floating dosage form (FDF) of 5-Fluorouracil (5-FU) was developed to prolong gastric residence time for the treatment of stomach cancer. The floating microspheres were prepared by solvent evaporation method. The prepared microspheres were characterized for their micromeretic properties, floating behavior and entrapment efficiency; as well by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), thin layer chromatography (TLC) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFRecent Results Cancer Res
May 2005
Even though the technique of total mesorectal excision has been widely used, there have been few detailed descriptions of the distribution of lymph nodes within the rectal mesentery. We describe the results of our anatomic study of lymph node size and distribution within the mesorectum and pelvic side-wall tissue using a fat-clearing solvent in seven male cadavers, and we used a similar technique to examine the mesorectum in a patient who underwent total mesorectal excision after preoperative chemoradiation for a uT3 rectal cancer. In both the cadavers and our patient, the majority of lymph nodes were located within the posterior upper two-thirds of the mesorectum.
View Article and Find Full Text PDF