Publications by authors named "Kiran A Nirmal"

Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility.

View Article and Find Full Text PDF

Advanced electronic semiconducting Van der Waals heterostructures (HSs) are promising candidates for exploring next-generation nanoelectronics owing to their exceptional electronic properties, which present the possibility of extending their functionalities to diverse potential applications. In this study, GeTe/MoTe HS are explored for nonvolatile memory and neuromorphic-computing applications. Sputter-deposited Ag/GeTe/MoTe/Pt HS cross-point devices are fabricated, and they demonstrate memristor behavior at ultralow switching voltages (V: 0.

View Article and Find Full Text PDF

Resistive-switching-based memory devices meet most of the requirements for use in next-generation information and communication technology applications, including standalone memory devices, neuromorphic hardware, and embedded sensing devices with on-chip storage, due to their low cost, excellent memory retention, compatibility with 3D integration, in-memory computing capabilities, and ease of fabrication. Electrochemical synthesis is the most widespread technique for the fabrication of state-of-the-art memory devices. The present review article summarizes the electrochemical approaches that have been proposed for the fabrication of switching, memristor, and memristive devices for memory storage, neuromorphic computing, and sensing applications, highlighting their various advantages and performance metrics.

View Article and Find Full Text PDF

Hybrid systems have attracted significant attention within the scientific community due to their multifunctionality, which has resulted in increasing demands for wearable electronics, green energy, and miniaturization. Furthermore, MXenes are promising two-dimensional materials that have been applied in various areas due to their unique properties. Herein, a flexible, transparent, and conductive electrode (FTCE) based on a multilayer hybrid MXene/Ag/MXene structure that can be applied to realize an inverted organic solar cell (OSC) with memory and learning functionalities is reported.

View Article and Find Full Text PDF

The applied potential, time, and water content are crucial factors in the electrochemical anodization process because the growth of one-dimensional nanotubes can be accelerated by enhancing the corrosive effect. We investigated the effect of the water content on the resistive switching (RS) properties of Ti foils by anodizing the foils and varying the water content in an electrolyte (1-10 vol %). By increasing the water content, we facilitated a slow transition from nanopores to nanotubes and realized an increase in the tube wall diameter and tube length.

View Article and Find Full Text PDF
Article Synopsis
  • 2D nanomaterials, particularly amorphous boron nitride (a-BN), show great potential for memory and synaptic devices but need improvements in process compatibility and cost-effectiveness.
  • Researchers successfully developed a CMOS-compatible Ag/a-BN/Pt memory device that exhibits low switching voltages and reliable resistive switching characteristics, indicating its effectiveness for multilevel resistive switching (MRS) applications.
  • The device was demonstrated to have memristive properties and simulated neural learning behaviors with high accuracy, suggesting promising applications in neuromorphic computing.
View Article and Find Full Text PDF